Ma `lumot

Qanday qilib olimlar yangi antijen va uning epitopini kashf etadilar?

Qanday qilib olimlar yangi antijen va uning epitopini kashf etadilar?


We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Internetda men topilgan barcha antijenlar va ularning epitoplarini sanab o'tadigan ma'lumotlar bazasini topdim. Xo'sh, qanday qilib olimlar yangi antijenni kashf etadilar? Ular immunitet reaktsiyasini keltirib chiqaradimi yoki yo'qligini bilish uchun ularni tanaga kiritishga harakat qiladimi? Va nihoyat, agar bu antijen bo'lsa, ular epitoplarini qanday bilishadi?


OK, sizda bir-birining ustiga qurilgan bir nechta savollaringiz bor (aniqlik uchun savollarni takrorladi):

Qanday qilib olimlar yangi antijeni kashf etadilar?

Buning bir qancha usullari bor, ular turli maqsadlarda qo'llaniladi.

Kashf qilish uchun tabiiy antijenodatda immunitet tizimi tomonidan ishlab chiqariladigan antikor tomonidan tan olinsa, avvalo, bu o'ziga xos antikorni qo'lga kiritgan bo'lardi. Bu immunitet tizimining qo'zg'atuvchiga (masalan, virusga) qarshi samarali ta'sirini ko'paytirish yoki tushunishga yondashuv bo'ladi.

Antikorni (va ideal holda kodlovchi DNK ketma-ketligini) ushlash uchun tadqiqotchilar patogen yoki uning qismlaridan foydalanishlari va unga bog'langan antikorlarni (yoki B hujayralarini) topishlari kerak. Buning uchun patogenni (zarrachalarni) ustunga mahkamlash mumkin edi va qonni kolon orqali o'tkazgandan so'ng, tegishli antikorlar va B hujayralari ustunda qoladi. Keyin bu hujayralarning DNKlari ketma -ket bo'lishi mumkin yoki antikorni qo'shimcha tozalash mumkin.

Aksariyat hollarda olimlar antigenga qarshi hali mavjud bo'lmagan antikorni topishni xohlashadi, bu bizni quyidagilarga olib keladi:

Olimlar immunitetni keltirib chiqaradimi yoki yo'qligini bilish uchun tanaga antijenlarni kiritishga harakat qiladimi?

Ha, bu amalga oshiriladi - lekin faqat hayvonlar bilan (asosan kalamushlar, quyonlar va echkilar). Poliklonal antikorlar to'g'ridan-to'g'ri ushbu hayvonlarning qonidan olinishi mumkin, lekin ko'pincha monoklonal antikorlar tadqiqot yoki tibbiy maqsadlar uchun kerak bo'ladi. Bular uchun talab qilinadigan jarayon ancha murakkab, lekin hujayra chizig'iga olib keladi, undan keyin kerakli antikorni ko'p miqdorda ishlab chiqarish mumkin.

Olimlar antikorning tegishli epitopini qanday bilishadi?

Antikorning aniq epitopini topishning bir necha yo'li mavjud, ularning barchasi odatda epitop xaritasi sifatida tavsiflanadi.

Eng keng tarqalgan usullar antikorni bog'lash uchun qaysi pozitsiyalarni (aminokislotalar) hal qiluvchi ahamiyatga ega ekanligini aniqlash uchun antigenning saytga yo'naltirilgan mutageneziga yoki antikor bilan bog'lanishi mumkin bo'lgan antigenning peptid qismlariga asoslanadi.


Men Nikolayning javobiga qo'shmoqchiman.

Antigen nima?

Birinchidan, Nikolay buni aytdi, lekin men shuni tushuntirmoqchimanki, antijen - bu antikorlar bog'laydigan narsa. Bu va dan farq qiladi immunogen bu sizning immunitet tizimingizga antikor ishlab chiqarishga olib keladigan antijen turi. Ammo antijen immunogen bo'lishi shart emas.

Peptidlar, shakar, nuklein kislotalar va lipidlarning barchasi keng tarqalgan antijenlerdir, lekin peptidlar, ehtimol siz bilgan narsadir. Odatda, ko'pchilik shakar va lipidlar o'z -o'zidan immunitetni ishlab chiqarishga qiynaladi va odatda oqsil (peptid) bilan birikadi. Bu mantiqqa to'g'ri keladi, chunki sizning tanangiz tabiiy ravishda ko'p shakar va lipidlar ishlab chiqaradi va agar siz ularning barchasiga antitelalar yasagan bo'lsangiz, u o'z -o'zidan hujum qiladi.

Antigen qanday topiladi?

Bunga yondashishning ikki yo'li mavjud.

  1. Antikorga birinchi yondashuv

Aytaylik, odam noma'lum virusni yuqtirgan, lekin tirik qoladi. Keyingi qadam ikkita narsani qilish bo'ladi:

  • Virusni madaniyat, shuning uchun olim uni laboratoriyada o'rganishi mumkin. Cheksiz miqdorda o'sishi uchun siz ko'pgina viruslarni etishtirishingiz kerak in vitro. Tashqariga chiqish va o'rganish uchun kerak bo'lgan barcha virusni tabiiy ravishda topish juda qiyin ish bo'lar edi.

  • Virusning genotipi. Virus genomini bilish kerak, shuning uchun biz genlarni manipulyatsiya qilishimiz va ularning ta'sirini ko'rishimiz mumkin.

Biz genomning turli komponentlarini o'zgartiradigan virusni o'zgartirishni boshlashimiz mumkin. Biz bu bemorning qon zardobiga bog'lanishini qanday o'zgartirishini ko'rishimiz mumkin edi. Sarumda virusni bog'laydigan antikorlar mavjud bo'lganligi sababli, sarum ko'pincha neytrallanadi yoki bog'lovchi antikorlar uchun ijobiy sinov bo'ladi. Endi agar biz A genini virusdan o'zgartirsak va sarum hali ham bog'lanadi/neytralizatsiya qilinsa, biz A genini bemorda immun reaktsiyasini yaratgan antigen emas deb taxmin qilishimiz mumkin. Agar B geni mutatsiyaga uchrasa va sarum bog'lanishni to'xtatsa, biz B genini noma'lum virusning antijeni deb taxmin qilishimiz mumkin.

  1. Antigenga birinchi yondashuv

Agar bizda faqat virus bo'lsa va u bilan kasallangan bemor bo'lmasa, biz antigenni aniqlash uchun uni namunali organizmlarga kiritishimiz kerak bo'ladi. Biroq, biz juda ko'p miqdordagi virus turlarini bilganimiz sababli, virusning antijen komponenti nima ekanligini eng yaxshi taxmin qilishimiz mumkin.

Masalan, 2012 yilda, bemor kasal bo'lib qolganida, ular ichida koronavirusga yaqin qarindoshi bo'lgan virusning ketma -ketligi qayd etilgan. Ular koronavirusning asosiy antijeni uning boshoqli oqsili ekanligini bilishgani uchun, ular noma'lum virusning boshoqli oqsillari bilan chambarchas bog'liq bo'lgan gen ham asosiy antijen deb taxmin qilishgan. Bu virus Yaqin Sharq respirator sindromi koronavirusi bo'lib chiqdi, uning asosiy antijeni - boshoq oqsili.


Skripps tadqiqot instituti olimlari vaktsinalarni ishlab chiqish uchun OIVga qarshi hujumning yangi nuqtasini topdilar

Rasm: Skripps tadqiqot instituti jamoasi OIV virusining yangi zaif joyini aniqladi. Bu erda OIV-1 konvertidagi glikoprotein trimerining elektron mikroskopik rekonstruksiyasi ko'rsatilgan. ko'proq ko'rish

Kredit: Kristina Corbaci tasviri, Skripps tadqiqot instituti ruxsati bilan.

LA JOLLA, CA-2014 yil 24 aprel-Xalqaro OITSga qarshi emlash tashabbusi (IAVI) bilan ishlovchi The Scripps Research Institute (TSRI) olimlari boshchiligidagi guruh OIV virusiga qarshi yangi zaif joyni topdi. Yangi aniqlangan joyga inson antikorlari tomonidan turli xil OIV shtammlarining infektsiyasini zararsizlantiradigan tarzda hujum qilish mumkin.

TSRI immunologiya va mikrobiologiya kafedrasi professori Dennis R. Burton, "OIVning zaiflik joylari juda kam, ammo bu ishda biz yangisini tasvirlab berdik va biz vaktsina yaratishda foydali bo'lishini kutamiz", dedi. va TSRIning La Jolla kampusidagi IAVI Neytrallashtiruvchi Antikor Markazi (NAC) va Milliy Sog'liqni Saqlash Institutlarining OIV/OITSga qarshi vaktsina immunologiyasi va immunogenni aniqlash markazi (CHAVI-ID) ilmiy direktori.

"Biz hali ham ushbu virusga qarshi yangi zaif joylarni topayotganimiz juda hayajonli", dedi Yan A. Uilson, Strukturaviy biologiya professori, Integratsion strukturaviy va hisoblash biologiyasi kafedrasi mudiri va Skaggs kimyoviy biologiya instituti a'zosi. TSRI va NAC va CHAVI-ID a'zosi.

Topilmalar ikkita qog'ozda-biri Burton boshchiligida, ikkinchisi TSRI assistenti Endryu B. Uord boshchiligida, shuningdek NAC va CHAVI-ID a'zosi va Uilson tomonidan jurnalning may sonida chop etilgan. Immunitet.

Bu kashfiyot OIVga qarshi samarali vaksinani yaratish bo‘yicha IAVI va NIH homiyligidagi yirik sa’y-harakatlarning bir qismidir. Bunday vaktsina virusning himoyasiz saqlanib qolgan joylariga - shtammdan shtammga ko'p farq qilmaydigan va antikor tomonidan ushlanganda virusni tark eta olmaydigan joylarga qarshi kuchli va uzoq muddatli immunitet reaktsiyasini keltirib chiqaradi. hujayralarni yuqtirish.

OIV, odatda, ushbu himoyasiz himoyalangan joylarni qattiq tushunish qiyin bo'lgan shakar qatlami va virus yuzasining tez mutatsiyaga uchragan qismlari ostida yashiradi. Infektsiyaga qarshi antikor reaktsiyasining katta qismi tez mutatsiyaga uchragan qismlarga qarshi qaratilgan va shuning uchun faqat vaqtinchalik samarali bo'ladi.

Yangi topilmalar oldidan, olimlar virusning to'rtta himoyalangan himoyalangan joylariga etib bora oladigan, "keng zararsizlantiruvchi" antikorlarning bir nechta turlarini aniqlay olishdi. Bu joylarning hammasi OIV infektsiyasining faqat ochiq sirt antijeni-virusga o'xshash membranadan o'sadigan gulga o'xshash konvert (Env) oqsili (gp140) ustida joylashgan va xost hujayralarini ushlab olish uchun mo'ljallangan.

Virusning yangi zaif joyini aniqlash IAVI protokoli G dan olingan qon namunalarini tekshirish bilan boshlandi, u erda IAVI va uning NACi Afrika, Hindiston, Tailand, Avstraliya, Buyuk Britaniya va AQShdagi klinik tadqiqot markazlari bilan hamkorlik qildi. nodir, keng neytrallashtiruvchi antikorlarni izlash uchun 1800 dan ortiq sog'lom, OIV bilan kasallangan ko'ngillilarning qon namunalari. Kichkina namunalar to'plamidan olingan sarum haqiqatan ham sinov hujayralarida OIV izolatlarining keng doiradagi infektsiyasini to'sib qo'ydi va bu keng neytrallashtiruvchi antikorlarning mavjudligini ko'rsatadi. 2009 yilda IAVI, TSRI va Theraclone Sciences olimlari so'nggi o'n yil ichida kuzatilgan OIVga qarshi birinchi yangi keng neytrallashtiruvchi antikorlarni ajratib olish va tavsiflashga muvaffaq bo'lishdi.

Birinchi maqolaning asosiy muallifi bo'lgan Burton laboratoriyasining ilmiy xodimi Emiliya Falkovska va hamkasblari tez orada namunaning OIVni neytrallashtiruvchi faolligining ko'p qismini tashkil etuvchi bir -biri bilan chambarchas bog'liq bo'lgan sakkizta antikorni topdilar. Olimlar aniqladilarki, bu antikorlar orasida eng keng tarqalgan ikkita neytrallashtiruvchi PGT151 va PGT152 butun dunyodagi bemorlarda topilgan OIV shtammlarining uchdan ikki qismini yuqtirishga to'sqinlik qilishi mumkin.

Qizig'i shundaki, keng neytrallash qobiliyatiga qaramay, bu antikorlar Env-da ilgari tasvirlangan himoyalanmagan saytlarga yoki epitoplarga bog'lanmagan-va gv120 yoki gp41-ning tozalangan nusxalari bilan hech qanday bog'lanmagan. Yuqorida tavsiflangan ko'p zararsizlantiruvchi OIV antikorlari u yoki bu Env subunitiga bog'lanadi. Oxir oqibat, tadqiqotchilar PGT151 va PGT152 nafaqat gp120 yoki gp41, balki ikkalasining bitlariga ham biriktirilishini aniqladilar.

Aslida, gp120 va gp41 Env tuzilishiga bitta gp120-gp41 kombinatsiyasi sifatida emas, balki uchta bir-biriga bog'lab qo'yilgan-trimer, biologlar tilida yig'iladi. PGT151 va 152 (ular deyarli bir xil), faqat shu etuk va to'g'ri yig'ilgan Env trimer konstruktsiyasida sodir bo'ladigan bog'lovchi joyga ega bo'lib chiqdi.

"Bu biz OIVni neytrallashtiradigan birinchi antikorlar, biz aniqladikki, etuk Env trimerini Envning boshqa shakllaridan aniq farq qiladi", dedi Falkovska. "Bu juda muhim, chunki bu virus hujayralarni yuqtirish uchun foydalanadigan Env shaklidir."

Ikkita yangi tadqiqotning ikkinchisi - yangi zaif epitopning dastlabki strukturaviy tahlili.

PGT151 (Uard laboratoriyasi boshchiligidagi) bilan Env trimer kompleksidagi elektron mikroskopini PGT151 Fab tuzilishi bilan rentgen kristallografiyasi (Uilson laboratoriyasi boshchiligida) birlashtirgan integratsiyalashgan yondashuvdan foydalanib, olimlar joylashuvni ingl. Env trimeridagi PGT151 seriyali bog'lash joyi-ikkita glikan (glikanlar) bo'lgan bitta gp41 oqsilining joyini, gp120 oqsilining yamog'ini va hatto trimer tuzilmasidagi qo'shni gp41 qismini o'z ichiga oladi. juda murakkab epitop ", dedi TSRI Uilson laboratoriyasining ilmiy xodimi va IAVI neytrallashtiruvchi antitelalar markazining a'zosi Klaudiya Blattner, aspirant Jeong Xyun Li bilan birga ikkinchi maqolaning birinchi muallifi.

Ajablanarlisi, PGT151 seriyali antikorlar Env trimeriga uning boshqa tuzilishini barqarorlashtiradigan tarzda bog'lanishi edi. "Odatda siz mahalliy Env trimerini tozalashga urinayotganingizda, u qulab tushadi, bu esa o'qishni qiyinlashtirdi", dedi Uord. "Bu uni barqarorlashtiradigan antikorni topishda muhim yutuq bo'ldi."

PGT151 sayti OIVga qarshi emlash uchun hujum nuqtasi sifatida qimmatli bo'lsa-da, uning kashfiyoti OIVda boshqa shunga o'xshash murakkab va himoyasiz epitoplar mavjudligiga ham ishora qiladi.

Alevandra Ramos, Jeong Xyun Li, Chi-"OIV antikorlarini keng zararsizlantirish gp41 ning sintezdan oldingi konformatsiyasida glikanga bog'liq bo'lgan yangi epitopni aniqlaydi", deb nomlangan olimlardan tashqari, birinchi maqolaga hissa qo'shganlar. -Xui Liang va Paskal Poignard, hammasi TSRI va IAVI neytrallashtiruvchi antitelalar markazidan Alekandro Ramirez, Rayan Makbrayd, Maykl B. Zvik va Jeyms C. Polson, TSRIdan Keti J. Doors, London tibbiyot kolleji kolleji Ronald Derking, Marit J. van Akademik tibbiyot markazidan Gils va Rojyer V. Sanders, Amsterdam Sachin S. Shivatare, Academia Sinicadan Chung-Yi Vu va Chi-Huey Vong, Taypey, Tayvan Po-Ying Chan-Hui va Theraclone Sciences, Inc.dan Kristine Swiderek, Sietl Yan Liu va Ten Feizi London Imperial kolleji Maykl S. Seaman Bostondagi Beth Israel Deaconess tibbiyot markazidan Jon P. Mur Kornell universiteti Vayl tibbiyot kolleji va Nyu-York shahridagi IAVI dan Ueyn C. Koff.

"OIV-1 Env trimerlaridagi gp41-gp120 interfeysida to'rtlamchi, bo'linishga bog'liq epitopning strukturaviy tasviri" nomli ikkinchi maqolaning mualliflari orasida Kvinten Sliepen, Ronald Derking, Alba Torrents de la Peña, Marit van. Gilz va Rojier V. Sanders, Akademik tibbiyot markazidan, Amsterdam Albert Kupo va Jon P. Mur, Kornell universiteti Vayl tibbiyot kollejidan Jan-Filipp Julien va Paskal Poignard TSRI va IAVI neytrallashtiruvchi antitelalar markazi va Vensi Peng va Jeyms C. Paulson TSRI.

Birinchi tadqiqotni moliyalashtirish IAVI Milliy Sog'liqni saqlash institutlari (grant AI33232, HIVRAD P01 AI82362), NIH tomonidan moliyalashtirilgan OIV/OITSga qarshi vaktsinalar immunologiyasi va immunogenni aniqlash markazi (CHAVI-ID) (grant UM1AI100663) tomonidan moliyalashtirildi. Kasalxona, MIT va Garvard va Aids Fonds Niderlandiya (grantlar #2011032, #2012041).

Ikkinchi tadqiqot uchun mablag 'IAVI, CHAVI-ID (UM1 AI100663) NIH (P30AI036214, HIVRAD P01 AI082362 va R01 AI084817) Kaliforniya Universiteti, San-Diyegodagi OITSga qarshi kurash markazi Kaliforniyadagi OITS/OITSga qarshi tadqiqot dasturi Fondsga yordam beradi. grant № 2011032) Gollandiya ilmiy tadqiqotlar tashkiloti, Evropa tadqiqot kengashi va Germaniya akademik almashinuv xizmati.

Bu ishni IAVI tomonidan moliyalashtirish qisman AQSh Xalqaro Taraqqiyot Agentligi (USAID) hisobidan amalga oshirildi. USAID dunyoning 120 dan ortiq mamlakatlarida iqtisodiy va gumanitar yordam ko'rsatadigan xorijiy yordam dasturini boshqaradi.

Skripps ilmiy -tadqiqot instituti haqida

Skripps tadqiqot instituti (TSRI) dunyodagi eng yirik mustaqil, notijorat tashkilotlaridan biri bo'lib, biotibbiyot fanlari bo'yicha tadqiqotlar olib boradi. TSRI ilm-fan va sog'liqni saqlashga qo'shgan hissasi, jumladan, saraton, revmatoid artrit, gemofiliya va boshqa kasalliklarni davolashning yangi usullariga asos yaratishdagi roli uchun xalqaro miqyosda tan olingan. Xayriyachi Ellen Brauning Skripps tomonidan 1924 yilda asos solingan Skripps Metabolik Klinikasidan paydo bo'lgan institut, hozirda La-Jolla, Kaliforniya va Yupiter shahridagi kampuslarida 3000 ga yaqin odam ishlaydi, bu erda taniqli olimlar, shu jumladan uchta Nobel mukofoti laureati- -keyingi kashfiyotlar ustida ishlash. Biologiya va kimyo fanlari doktori ilmiy darajasini beruvchi institutning magistratura dasturi mamlakatdagi eng yaxshi o'ntalikka kiradi. Qo'shimcha ma'lumot olish uchun http: // www ga qarang. skriptlar. ta'lim.

Xalqaro OITSga qarshi emlash tashabbusi (IAVI)-notijorat global tashkilot, uning vazifasi butun dunyoda foydalanish uchun OIVga qarshi xavfsiz, samarali, bemalol, profilaktik vaksinalar ishlab chiqarishni ta'minlashdir. IAVI 1996 yilda tashkil etilgan bo'lib, 25 mamlakatdagi xususiy kompaniyalar, olimlar va fuqarolik jamiyati hamkorlari bilan birgalikda OITSga qarshi vaksinalarga nomzodlarni tadqiq etish, loyihalash va ishlab chiqish ustida ish olib boradi. Bundan tashqari, IAVI siyosat tahlilini o'tkazadi va OITSga qarshi vaksina sohasining himoyachisi bo'lib xizmat qiladi. IAVI OIV va OITSga qarshi kurashning kompleks yondashuvini qo'llab-quvvatlaydi, bu OIVning oldini olish va davolash bo'yicha mavjud dasturlarni kengaytirish va kuchaytirishni OIVning oldini olish uchun yangi vositalarni ishlab chiqish va ishlab chiqishga maqsadli investitsiyalar bilan muvozanatlashtiradi. IAVI kelajakdagi OITSga qarshi vaktsina mavjud bo'lishini va unga muhtoj bo'lganlarning barchasi uchun ochiq bo'lishini ta'minlashga bag'ishlangan.

IAVI ishi ko'plab donorlarning saxovatli ko'magi tufayli mumkin bo'ldi, jumladan: Bill va Melinda Geyts jamg'armasi Daniya Tashqi ishlar vazirligi Irlandiya yordami Yaponiya Moliya vazirligi Gollandiya Tashqi ishlar vazirligi Norvegiya taraqqiyot hamkorlik agentligi (NORAD) ) Buyuk Britaniya Xalqaro Taraqqiyot Departamenti (DFID) va AQSh Xalqaro Taraqqiyot Agentligi (USAID). IAVI donorlarining to'liq ro'yxati http: // www. iavi. tashkilot. Bu tadqiqotlar qisman Amerika xalqining USAID orqali saxiy yordami natijasida amalga oshdi. Tarkibi mualliflarning zimmasidadir va USAID yoki AQSh hukumatining qarashlarini aks ettirmaydi.

Rad etish: AAAS va EurekAlert! EurekAlert -ga joylashtirilgan yangiliklarning to'g'riligi uchun javobgar emas! hissa qo'shadigan muassasalar tomonidan yoki EurekAlert tizimi orqali har qanday ma'lumotdan foydalanish uchun.


Bir qarashda

Rh qon guruhining antijenleri

Antigenlar soni 49: D, C, E, c va e - eng muhimlari
Antigen o'ziga xosligi Protein
Aminokislotalar ketma -ketligi ko'pchilik Rh antijenlarining o'ziga xosligini aniqlaydi.
Antigen tashuvchi molekulalar Noma'lum funktsiyasi bo'lgan oqsillar
RhD va RhCE oqsillari transmembranli, ko'p hujayrali oqsillar bo'lib, ular eritrotsitlar membranasining ajralmas qismi hisoblanadi. RhCE oqsili C/c antijeni (2 -hujayradan tashqari pastadirda) va E/e antijeni (4 -hujayradan tashqari pastadirda) va boshqa ko'plab Rh antijenlarini, masalan, C w, C x ni kodlaydi.
Aksariyat hujayrali sirt molekulalaridan farqli o'laroq, Rh oqsillari glikozillanmagan (ular tarkibida oligosakkaridlar yo'q), lekin ular RHAG deb ataladigan eritrotsitlar membranasi glikoproteini bilan chambarchas bog'liq. Rh-RhAG kompleksining vazifasi ammiak yoki karbonat angidridni tashishni o'z ichiga olishi mumkin. RhD oqsillari D antijenini kodlaydi.
Molekulyar asos RHD va RHCE ikkita geni Rh antijenlarini kodlaydi.
Rh genlari 97% bir xil va ular bir -birining yonida 1 -xromosomada joylashgan. D/d polimorfizmi ko'pincha butun RHD genining yo'q qilinishidan kelib chiqadi. C/c polimorfizmi to'rtta aminokislota o'zgarishiga olib keladigan to'rtta SNPdan kelib chiqadi, ulardan biri (S103P) C yoki c antigenining o'ziga xosligini aniqlaydi. E/e polimorfizmi bitta SNP (676G 𡤬) dan kelib chiqadi, bu bitta aminokislotaning o'zgarishiga olib keladi (A226P).
Rh antijenlarining chastotasiD: 85% kavkazliklar, 92% qora tanlilar, 99% osiyoliklar
C: 68% kavkazliklar, 27% qora tanlilar, 93% osiyoliklar
E.: 29% kavkazlar, 22% qora tanlilar, 39% osiyoliklar
v: 80% kavkazlar, 96% qora tanlilar, 47% osiyoliklar
e: 98% kavkazlar, 98% qora tanlilar, 96% osiyoliklar (1)
Rh fenotiplarining chastotasiRh haplotipi DCeKavkazlarda (42%), tubjoy amerikaliklarda (44%) va osiyoliklarda (70%) eng ko'p uchraydi.
Rh haplotipi Dce: qora tanlilarda eng ko'p uchraydi (44%)
Rh-D-salbiy fenotip: eng ko'p kavkazlarda (15%), qora tanlilarda kam uchraydi (8%) va kamdan -kam osiyolarda (1%) (1)

Rh antijenlariga qarshi ishlab chiqarilgan antikorlar

Antikor turi Asosan IgG, ba'zi IgM
Rh antikorlarining aksariyati IgG turiga kiradi.
Antikorlarning reaktivligi Gemolizga qodir
Rh antikorlari kamdan -kam hollarda komplementni faollashtiradi. Ular qizil qon hujayralari bilan bog'lanadi va ularni taloqda yo'q qilish uchun belgilaydi (ekstraskulyar gemoliz).
Transfüzyon reaktsiyasi Ha—odatda kechiktirilgan gemolitik transfüzyon reaktsiyalari
Anti-D, anti-C, anti-e va anti-c og'ir gemolitik transfüzyon reaktsiyalariga olib kelishi mumkin. Gemoliz odatda tomirdan tashqari bo'ladi (1).
Yangi tug'ilgan chaqaloqning gemolitik kasalligi Ha—HDN ning eng keng tarqalgan sababi.
D antijeni ona alloimmunizatsiyasining 50% ni tashkil qiladi (2).
Anti-D va anti-c jiddiy kasalliklarga olib kelishi mumkin.
Anti-C, anti-E va anti-e engil va o'rtacha kasalliklarga olib kelishi mumkin.

T hujayrali retseptorlari antikorlarga o'xshash geterodimerlardir

T hujayralarining javoblari antigen taqdim qiluvchi hujayra yoki maqsadli hujayra bilan to'g'ridan-to'g'ri aloqaga bog'liq bo'lganligi sababli, T hujayralari tomonidan ishlab chiqarilgan antigen retseptorlari, B hujayralari tomonidan ishlab chiqarilgan antikorlardan farqli o'laroq, faqat membrana bilan bog'langan shaklda mavjud bo'lib, ajratilmaydi. Shu sababli, T hujayrali retseptorlarni ajratish qiyin edi va ular faqat biokimyoviy tarzda 1980 -yillarga kelib aniqlangan. Ham sitotoksik, ham yordamchi T hujayralarida retseptorlari antikorlarga o'xshaydi. Ular ikkita disulfid bilan bog'langan polipeptid zanjiridan ('x003b1 va 'x003b2 deb ataladi) iborat bo'lib, ularning har biri ikkita Ig-ga o'xshash domenni o'z ichiga oladi, bitta o'zgaruvchan va bitta doimiy (24-42A-rasm). Bundan tashqari, T hujayrali retseptorning hujayradan tashqari qismining uch o'lchovli tuzilishi rentgen nurlarining diffraktsiyasi yordamida aniqlangan va u Y shaklidagi antikor molekulasining bir qo'liga juda o'xshaydi (24-42B-rasm).

24-42-rasm

T hujayra retseptorlari heterodimeri. (A) Retseptor α va β polipeptid zanjiridan iborat ekanligini ko'rsatuvchi sxematik chizma. Har bir zanjir uzunligi 280 ga yaqin aminokislotadan iborat va ikkita Ig-ga o'xshash domenlarga o'ralgan katta hujayradan tashqari qismga ega (ko'proq. )

α va β zanjirlarini kodlaydigan gen segmentlari hovuzlari turli xromosomalarda joylashgan. Antikorli og'ir zanjirli basseynlar singari, T hujayrali retseptorli hovuzlar ham alohida tarkibga ega V, D, va J gen segmentlari, ular timusdagi T hujayralari rivojlanishida saytga xos rekombinatsiya orqali birlashtiriladi. Bitta istisno bilan, antikor xilma-xilligini yaratish uchun B hujayralari tomonidan qo'llaniladigan barcha mexanizmlar T hujayralari tomonidan ham T hujayralari retseptorlari xilma-xilligini yaratish uchun ishlatiladi. Darhaqiqat, xuddi shunday V(D)J rekombinaza ishlatiladi, shu jumladan ilgari muhokama qilingan RAG oqsillari. T-hujayra retseptorlarini diversifikatsiya qilishda ishlamaydigan mexanizm antigenga asoslangan somatik gipermutatsiyadir. Shunday qilib, retseptorlarning yaqinligi pastligicha qolmoqda.Ka

10 5 -10 7 litr/mol), hatto immun javob kech. Biz turli xil ko-retseptorlar va hujayra-hujayra yopishish mexanizmlari T-hujayraning antigenni taqdim etuvchi hujayra yoki maqsadli hujayra bilan bog'lanishini qanday kuchaytirib, T-hujayra retseptorlarining past yaqinligini qoplashga yordam berishini keyinroq muhokama qilamiz.

T hujayralarining ozchilik qismi, α va β zanjirlarini ishlab chiqarish o'rniga, γ va δ zanjirlaridan tashkil topgan boshqa, lekin bir -biriga o'xshash retseptorli heterodimer turini hosil qiladi. Bu hujayralar rivojlanishning boshida paydo bo'ladi va asosan epiteliyada (masalan, teri va ichakda) topiladi. Ularning vazifalari noaniq va biz ularni boshqa muhokama qilmaymiz.

B hujayralaridagi antigen retseptorlari kabi, T hujayra retseptorlari plazma membranasida bir qator o'zgarmas membrana bilan bog'langan oqsillar bilan chambarchas bog'langan bo'lib, ular signalni antigen bilan faollashtirilgan retseptordan hujayraning ichki qismiga o'tkazishda ishtirok etadilar. Ushbu oqsillarni keyinroq batafsilroq muhokama qilamiz. Birinchidan, biz sitotoksik va yordamchi T hujayralari qanday ishlashini va ularning xorijiy antijeni tanib olishning maxsus usullarini ko'rib chiqishimiz kerak.


Enzolytics, Inc (ENZC) Biotech-da kuchli ishga tushirish anti-SARS-CoV-2 monoklonal antikorlarini ishlab chiqaradi

Enzolytics, Inc. (ENZC) payshanba kuni .25 belgisidan pastga qisqa pasayishdan keyin har kuni 10 million dollarlik kuchli o'sish bo'yicha jadvallarni ko'tarmoqda. ENZC - bu so'nggi bir necha oy ichida asosiy liga yuguruvchisi va quvvat manbai. ENZC so'nggi bir oyda 0,958 aktsiyaga qadar afsonaviy yugurishni ko'rdi, chunki u BioClonetics va Enzolytics o'rtasidagi tarixiy birlashishni tugatdi, chunki yangi biotexnologiya insoniyatni to'liq ishlab chiqarish texnologiyasi sifatida e'tiborga olinmoqda. Monoklonal antikorlar hozirda COVID-19 ni davolash uchun anti-SARS-CoV-2 (CoronaVirus) monoklonal antikorlarini ishlab chiqarish uchun qo'llanilmoqda.

Koronavirusga qarshi vaktsinalar virusning yangi kashf etilgan variantiga qarshi olimlar kutganidek samarali emasligi tobora ayon bo'lmoqda. Har kuni koronavirus pandemiyasi avj olayotgani sayin, bir qancha faol terapevtik vositalarga bo'lgan ehtiyoj yanada yaqqol namoyon bo'ladi. ENZC-COVID-19 ni davolash uchun monoklonal antikorlardan foydalanishda kashshof. Yaqinda ENZC koronavirusda saqlanib qolgan, o'zgarmaydigan, saqlanib turadigan 11 ta saytni (epitoplarni) aniqladi, ularga qarshi maqsadli anti-SARS-CoV-2 monoklonal antikorlarini ishlab chiqaradi. Kompyuter tahlilidan (sun'iy intellekt [AI]) foydalanib, kompaniyaning genetika va molekulyar biologiya ma'lumotlar fanlari guruhi hozirda ma'lum bo'lgan 50 512 dan ortiq Koronavirus izolatlarini tekshirdi va o'zgarmas bo'lishi kutilayotgan konservatsiyalangan saytlarni aniqladi. Kuratsiya qilingan virus izolatlarida aniqlangan 11 ta konservatsiyalangan ketma-ketlik tahlil qilingan 50 512 ta Koronavirus izolyatasining 98,71% dan 99,29% gacha saqlanib qolganligi asosida aniqlandi. Kompaniya ushbu kashfiyotlarni o'z ichiga olgan keng qamrovli patentga ariza topshirdi.

Enzolytics, Inc. dori ishlab chiqaruvchi kompaniya bo'lib, zaiflashtiruvchi yuqumli kasalliklarni davolash uchun o'zining xususiy oqsillarini tijoratlashtirishga sodiqdir. ENZC o'tgan yili ko'plab patentlarga ega bo'lgan intellektual mulk portfelini tezda yaratdi. Yaqinda, o'tgan oy, kompaniya AQSh Patent idorasidan "Sutemizuvchilarning orqa miya immun omilidan ajratilgan yadro oqsillari - davolash uchun farmatsevtik kompozitsiya" uchun patent talabnomasi topshirilganligini tasdiqlovchi rasmiy ariza kvitansiyasini olgani haqida xabar berdi. Bundan buyon ENZC bir qator yangi arizalarni topshirdi. Kompaniya yaqinda BioClonetics Immunotherapeutics, Inc bilan birlashdi, hozirda Enzolytics a Dallas and College Station, Texas biotexnologik kompaniyasi bo'lib, yuqumli kasalliklarga qarshi to'liq inson monoklonal antikorlarini (mAbs) ishlab chiqarishning xususiy texnologiyasiga ega.

Microcapdaily bu haqda hisobot berdi ENZC BioColnetics boshidan beri birlashdi ta'rifi: “ Enzolytics, Inc. Enzolitik va uning yangi sho''ba korxonasi BioClonetics OIV/OITSni davolash uchun qaytarilmas Pepsin fraktsiyali peptid molekulasining litsenziyalash huquqiga ega, bozor 2025 yilga borib 30 milliard dollarga baholanishi kutilmoqda. Kompaniya maqsadli (toksik bo'lmagan) monoklonal antikorlarni ishlab chiqaradi va hozirda ikkita alohida rivojlanmoqda. ammo OIV va CoronaVirusga qarshi qaratilgan yuqumli kasalliklarni davolash uchun qo'shimcha terapiya platformalari. Enzolytics o'zining orqasida asosiy liga darajasidagi boshqaruv guruhini jalb qildi va o'zining laboratoriya imkoniyatlarini Klinikagacha bo'lgan tadqiqotlar institutidagi Texas A&M universiteti kampusida kengaytirdi, u erda OIV va covid-19 ga qarshi qo'shimcha monoklonal antikorlarni ishlab chiqaradi. Ushbu kengayish Enzolyticsga OIV virusi va koronavirusga qarshi monoklonal antikorlarni ishlab chiqarishni yakunlash va kampusdagi biofarma mutaxassislari bilan hamkorlik qilish imkonini beradi. Microcapdaily birinchi bo'lib ENZC haqida 16-sentabr kuni "BioClonetics LOI Sparks Enzolytics Inc (OTCMKTS: ENZC)" maqolamizda qo'shilish haqida e'lon qilingan kundan keyingi kun xabar berdi.

Enzolitik tezda bu erga katta narsalar haqida gapiradigan kuch uyini jalb qildi. Ular yaqinda MD Ronald Mossni Tibbiy maslahat kengashiga tayinlashdi. Janob Moss so'nggi 25 yil ichida ko'plab biotexnologiyalarga ega bo'lgan boshqaruvchi edi. U I, II va III klinik sinovlar, shu jumladan IND va NDA tajribasi orqali dasturlarni boshqarishda keng klinik va tartibga soluvchi boshqaruv tajribasiga ega. Kompaniyaning bosh ilmiy direktori janob Genri Zhabilov terapevtik oqsillardan foydalangan holda bir nechta klinik sinovlarni boshqargan. U OITV va saraton immunoterapiyasi bilan bog'liq AQShning bir nechta patentlarini ixtiro qilgan va kompaniyaning IPF platformasiga asoslangan immunitetni kuchaytiruvchi.

ENZC-ning ichki qismini bilish uchun quyidagi qutiga elektron pochtangizni kiritib, hoziroq Microcapdaily.com saytiga obuna bo'ling.

Yangi birlashtirilgan kompaniyalarni bosh direktor va asosiy aktsiyador Charlz S. Kotropiya boshqaradi, u o'z karerasida 200 dan ortiq patentlarni sudga bergan va Federal sudlarda va AQSh Patentida ko'rilgan bir qancha muhim patent nizolarida bosh maslahatchi bo'lib ishlagan taniqli intellektual mulk advokati. va savdo belgisi idorasi. Janob Kotropiya BioCLonetics kompaniyasini asos solgan, uning akasi doktor Jozef Kotropiya, MD, u ko'plab yuqumli kasalliklarga qarshi inson antikorlarini ishlab chiqaruvchi BioCLonetics xususiy usulini yaratgan. Bitta hujayra (CLONE 3 deb nomlangan) OIV virusini zararsizlantirish bo'yicha bir qancha testlar va 5 ta mustaqil tadqiqotlarda butun dunyo bo'ylab ma'lum bo'lgan barcha navlarning 98% da namoyish etilgan.

Bir necha hafta oldin, Kompaniya Bolgariya mas'uliyati cheklangan jamiyati (50%) egasi bo'lgan Xalqaro tibbiy sheriklar (“IMPL ”) tuzish uchun Ustavni tuzdi. Kompaniyaning IMBLdagi hamkorlari Yevropa Tibbiyot Agentligi (“EMA”) standartlari ostidagi Klinik sinovlar va Kompaniyaning EMA ruxsatnomasi uchun ariza berish xarajatlarini moliyalashtiradigan muvaffaqiyatli bolgariyalik ishbilarmonlar guruhidir. ITV-1 OIVni davolash uchun patentlangan terapevtiklar. EMA va Amerika Qo'shma Shtatlari Giyohvand moddalarni boshqarish bo'yicha federal boshqarmasi (“FDA ”) o'rtasida o'zaro tan olish to'g'risidagi bitimga (“MRA ”) binoan, kompaniya ITV-1 birikmasi uchun EMA ruxsatnomasi berilishi ENZC talablariga javob berishi kerak deb hisoblaydi. FDA tomonidan tan olinishi uchun #8217s davosi. IMBL EMA standartlari bo'yicha talab qilinishi mumkin bo'lgan klinik sinovlarni boshlash uchun Clinic Design kompaniyasini jalb qilish bo'yicha muzokaralarga kirishdi. Kompaniya o'zining litsenziyalangan va patentlangan muolajalarining barcha mavjud va hali kashf qilinmagan imkoniyatlarini tijoratlashtirish bo'yicha sa'y-harakatlarini davom ettirar ekan, IMBL qo'shilishi va EMA ruxsatnomasini olishning afzalliklari ENZC va o'sish uchun yangi va qiziqarli yo'llarni ochdi. o'z aktsiyadorlari uchun qiymatning potentsial oshishi bilan bog'liq.

Kompaniyaning joriy va oldingi yillik moliyaviy hisobotlari bo'yicha auditorlik tekshiruvlari o'tkazilmoqda va OTCQB uchun ariza tekshirilgan hisobotlar chiqarilgandan keyin taqdim etishga tayyorlanmoqda. Kompaniya ikki yillik auditni iloji boricha tezroq yakunlashni rejalashtirmoqda, lekin birjadan tashqari bozorlar pushti rangdagi asosiy ma'lumotlarni oshkor qilish bo'yicha ko'rsatmalarga muvofiq 2021 yil 31 dekabrdagi yillik moliyaviy hisobotni taqdim etadi. Kompaniya 2021 yil 31 martgacha bo'lgan muddat tugashidan oldin kelgusi haftalarda, 2020 yil 31 -dekabr uchun oshkor qilishning asosiy ko'rsatmalari bo'yicha moliyaviy hisobotlarni topshirishni kutmoqda.

ENZC yaqinda Koronavirusda SARS-CoV-2 monoklonal antikorlarini ishlab chiqaradigan o'n bitta saqlanib qolgan, o'zgarmas joyni (epitoplar) aniqladi. Kompyuter tahlilidan (Sun'iy intellekt [AI]) foydalanib, Kompaniyaning genetika va molekulyar biologiya ma'lumotlari bo'yicha guruhi hozirda ma'lum bo'lgan 50,512 dan ortiq koronavirus izolatlarini skanerdan o'tkazdi va saqlanib qolgan joylarni aniqladi. Virus izolatlarida aniqlangan 11 ta saqlanib qolgan ketma -ketliklar tahlil qilingan 50,512 ta koronavirus izolatlarining 98,71% dan 99,29% gacha saqlanishi asosida aniqlandi.

ENZC ushbu kashfiyotlarni o'z ichiga olgan keng qamrovli patentga ariza topshirdi. Bu dastlabki talabnoma AQShda topshirilgan va 153 mamlakat obuna bo'lgan Xalqaro patent hamkorlik to'g'risidagi shartnoma (PCT) orqali xalqaro patent himoyasini talab qilish uchun uzaytiriladi. Talab qilingan patent himoyasi kashf qilingan epitop/antijenlarga patent talablari, vaksina talablari, antikorlarga da'volar va epitop/antijenlarga tegishli profilaktik/terapevtik usul bo'yicha da'volarni o'z ichiga oladi.

Before completing the Artificial Intelligence analysis of the 50,512 SARS-CoV-2 isolates to identify conserved epitopes, the Company’s scientists predicted a specific target epitope that is correlative in structure to the site on the HIV virus to which the Company has produced a monoclonal antibody that has been shown to neutralize the HIV virus. The prediction was that this site would be conserved as is the correlative site on the HIV virus. The AI analysis of the 50,512 SARS-CoV-2 isolates identified this predicted site on the virus as 99% conserved across all 50,512 isolates. This primary site on the SARS-CoV-2 virus has also been confirmed as existing (100%) in the U.S. SARS-CoV-2 virus and the virus variants which have surfaced in United Kingdom, Brazil and South Africa, which are now in the U.S. This epitope on the SARS-Cov-2 virus is included in the first being targeted by the Company in its production of epitope specific monoclonal antibodies. The Company’s focus is on producing monoclonal antibodies that target immutable sites to avoid “virus escape”.

In addition to patenting Company’s findings of conserved sites on the SARS-CoV-2 (Coronavirus), the Company is also filing patent applications covering the conserved sites on the HIV virus. Filings will be made in the U.S. Patent Office and then extended for international coverage through the PCT covering 153 countries.

As the Company has previously reported, it is also curating (analyzing) the amino acid sequences of other major viruses and will file patent applications claiming the identified antigens/epitopes and associated therapeutics. Using AI analysis, the Company is now identifying and will claim the conserved epitopes/antigens on the infectious diseases caused by HIV-2, Influenza A and B, H1N1 influenza, Respiratory syncytial virus (RSV), Small-Pox, Ebola Virus, Tetanus, Diphtheria, HTLV-1/2, Rabies, Herpes zoster, Varicella zoster, Anthrax, Mason-Pfizer monkey virus (MPMV), Visna virus (VISNA) and mouse mammary tumor virus (MMTV). Patent applications will be filed claiming the inventive findings. Patent claims will cover the discovered epitope/antigens, with proposed vaccine claims, antibody claims, and related prophylactic/therapeutic method claims relating to these identified epitope/antigens.

For more on ENZC Subscribe Right Now!

Enzolytics , Inc. (ENZC) is rocketing up the charts on a powerful surge of 10s of millions of dollar volume daily since a brief dip below the .25 mark on Thursday. ENZC is a major league runner and powerhouse stock over the past few months ENZC has seen a legendary run to recent highs of 0.958 per share as it completes the historic merger between BioClonetics and Enzolytics the new biotech is getting noticed as its technology for producing fully human monoclonal antibodies is currently being employed to produce anti-SARS-CoV-2 ( CoronaVirus ) monoclonal antibodies for treating COVID-19. It is becoming increasingly evident that Coronavirus vaccines are not as effective against newly discovered variant of the virus as scientists had hoped. With each day of progression of the Coronavirus pandemic, the dire need for multiple active therapeutics becomes more evident. ENZC is a pioneer in using monoclonal antibodies for treating COVID-19. Recently ENZC has identified eleven conserved, expectedly immutable sites (epitopes) on the Coronavirus against which it is producing targeted anti-SARS-CoV-2 monoclonal antibodies. Using computer analysis (Artificial Intelligence [AI]), the Company’s genetics and molecular biology data science team has now screened more than 50,512 Coronavirus isolates currently known and has identified conserved sites which expectedly are immutable. The 11 conserved sequences identified on the virus isolates curated have been identified on the basis that they are 98.71% to 99.29% conserved over the entirety of the 50,512 Coronavirus isolates analyzed. The Company has filed a comprehensive patent application covering these discoveries. Since a brief dip Investors are looking for a powerhouse move back to recent highs a break over .91 and its an all-out blue-sky breakout We will be updating on ENZC when more details emerge so make sure you are subscribed to Microcapdaily so you know what’s going on with ENZC.


Aniqlash

Aniqlash is typically achieved using one of two methods: (a) colorimetric or enzyme-mediated detection and (b) fluorescence-based detection.

Ichida colorimetric method, the bound primary or secondary antibody is conjugated to a substrate which yields a precipitating product when converted by an enzyme. This precipitate is visible as colored staining when viewed by light microscopy.

Ichida fluorescence-based detection method, antibody bound to the antigen of interest in the tissue is directly or indirectly conjugated to a fluorophore (also sometimes called a fluorochrome), a molecule that fluoresces in the presence of light of a specific wavelength.


Vaccine Ingredients

Injecting something into your body can be concerning for some, especially when you're unsure of what's inside the needle. We're here to take the mystery out of a vaccine's ingredients.

A vaccine contains a part of a germ (bacteria or virus) that is called an antigen. The antigen has already been killed or disabled before it's used to make the vaccine, so it can't make you sick. Antigens are substances, often a protein, that stimulate the body to produce an immune response to protect itself against attacks from future actual disease exposure. In addition, vaccines contain other ingredients that make them safer and more effective, including preservatives, adjuvants, additives and residuals of the vaccine production process. Because specific ingredients are necessary to make a vaccine, even though they are eventually removed, trace amounts can still remain. These residuals can include small amounts of antibiotics and egg or yeast protein. The American Academy of Pediatrics also provides a good explanation about what's inside the vaccine needle.

If you're a parent concerned that your child may be exposed to too many antigens, there's no need to worry: Today's vaccines contain far less antigens than in the past, thanks to advances in biomedical science. Additionally, children's bodies are well equipped to handle many antigens at the same time. A healthy baby can accommodate multiple vaccinations because vaccines, and the antigens they contain are designed for babies' immune systems. In fact, babies can handle significantly more antigens than those that are found in vaccines.

A few years ago, much attention was placed on thimerosal, an organic form of mercury (also called ethylmercury) that prevents vaccines from being contaminated. This form of mercury is different from methylmercury, which can damage the nervous system. Although thimerosal has been shown to be safe, now all routine childhood vaccines are produced in thimerosal-free form. This includes the flu vaccine.


How are Antibodies Produced?

How are Antibodies Produced?
Although detailed mechanics of the immune response are beyond the scope of this site, it is useful, in the context of developing a custom antibody, to have an overview of how antibodies are produced by the immune system.

When an organism’s immune system encounters a foreign molecule (typically a protein) for the first time, specialized cells such as macrophages and dendritic cells capture the molecule and begin breaking it down so that it can present these antigens to B cell lymphocytes.

Once Antigen Presentation to the B cell lymphocytes has occurred, a process known as Somatic Hypermutation allows the B cell to begin coding for a new antibody that will contain a unique Antigen Binding Site in the variable region that is capable of binding specifically to an epitope from the antigen.

Each B cell lymphocyte produces one unique antibody against one unique epitope.

Once antibodies with sufficient specificity to the epitope can be encoded, the B cell begins to release antibodies into the bloodstream. These antibodies then bind specifically with the foreign molecule and allow the immune system to eliminate the molecule from the system.

In some cases, these antibodies can disable pathogens such as viruses directly due to the binding action. In other cases, such as with bacterial pathogens, these antibodies bind to surface proteins on the bacterium’s surface, thereby signaling to the rest of the immune system that the pathogen should be destroyed.

After the foreign molecule has been eliminated, B cells remain in the bloodstream ready to produce antibodies if the antigen is encountered again.

From the perspective of developing a custom antibody against a protein antigen, the immune system captures the protein, breaks it down into individual epitopes and presents these epitopes to the B cells so that development of antibodies specific to those epitopes can begin. These antibodies can then be collected directly in the serum or by isolating the individual B cells that produce antibody against the epitope of interest. With a full-length protein antigen, there will typically be multiple B cells generating antibodies against multiple epitopes from different regions of the protein.


2. MATERIALS AND METHODS

2.1. Sequence alignment of 66 epitopes in IEDB database to SARS𠄌oV𠄂 spike protein

We downloaded the spike protein amino acid sequence of SARS𠄌oV𠄂 isolate Wuhan‐Hu𠄁 from GenBank (GenBank ID: <"type":"entrez-protein","attrs":<"text":"QHD43416.1","term_id":"1791269090","term_text":"QHD43416.1">> QHD43416.1). The sequences of the 66 epitopes containing pentapeptides of SARS𠄌oV𠄂 spike protein were from Lucchese G's report and checked in the IEDB database. 4 Then, the sequences of these epitopes were aligned with the amino acid sequence of SARS𠄌oV𠄂 spike protein to obtain 66 peptides at the corresponding sequence position of SARS𠄌oV𠄂 spike protein, which might be candidate epitopes of a vaccine.

2.2. Detection of nonsynonymous mutation sites of SARS𠄌oV𠄂 spike protein

As nonsynonymous mutation sites in the viral amino acid sequence may affect the recognition of vaccine antigens, vaccine candidate antigens are generally more inclined to choose conservative sequences. 7 , 8 Therefore, the inclusion of mutation sites in candidate epitopes of SARS𠄌oV𠄂 should be avoided as much as possible. We searched the 2019 Novel Coronavirus Resource (2019nCoVR, https://bigd.big.ac.cn/ncov) from the China National Center for Bioinformation (CNCB) to obtain high‐quality genomic data of SARS𠄌oV𠄂 clinical isolates. A total of 1218 isolates from 34 countries around the world sampled from June 1, 2020 to June 30, 2020 were selected for analysis. The detailed countries are shown in Table S1. We focused on counting nonsynonymous mutations that cause amino acid changes in spike protein single‐nucleotide polymorphism (SNPs). The amino acid sites with nonsynonymous mutations that appeared twice or more in 1218 isolates were considered to be easily mutated. The obtained 66 peptides of SARS𠄌oV𠄂 spike protein were checked for the presence of the easily mutated amino acid sites, and peptides containing the easily mutated sites should be noted in subsequent screening.

2.3. Screening candidate vaccine epitopes in spike protein

The immune protective antigens in the peptides of SARS𠄌oV𠄂 spike protein were predicted using immunoinformatics tool Vaxijen v2.0, 9 the toxic peptides were predicted using ToxinPred 10 and the allergenic peptides were predicted using AllergenFP v.1.0. 11 The ability of the epitopes to induce interferon‐γ (IFN‐γ), interleukin𠄄 (IL𠄄), and IL� secretion was predicted using IFNepitope, 12 IL4Pred, 13 and IL�Pred, 14 respectively. The peptides with nonantigenic protection, toxicity, or allergenicity were removed, and the remaining peptides were used as antigen epitopes for subsequent screening. The solvent accessibility of each amino acid of spike protein (template 6xr8.1 15 ) was predicted by SWISS‐MODEL 16 to screen the epitopes that were more likely to be exposed on the surface of the spike protein. ABCpred 17 and IEDB Bepipred Linear Epitope Prediction 2.0 18 were used to predict B�ll epitopes. NetMHC 4.0 Sever, 19 Rankpep, 20 ਊnd SYFPEITHI 21 were used to predict T�ll epitopes and HLA molecules. As different HLA types are expressed at dramatically different frequencies in different ethnicities, 22 after obtaining the results of HLA class I and class II molecules recognized by these epitopes, we predicted the coverage rate of each epitope in different populations using Population Coverage in IEDB Analysis Resource. 22 Although some epitopes contained easily mutated sites, some of them might be strong neutralizing epitopes which might induce strong protections and should also be considered in vaccine design. Therefore, according to the above analysis, the selected vaccine candidate epitopes for SARS𠄌oV𠄂 were predicted to be relatively conservative, immunoprotective, nontoxic, and nonallergenic,ਊnd਌ould promote the secretion of cytokines and more likely to be exposed on the surface of the spike protein. They were both B‐ and T�ll epitopes, which could identify a certain number of HLA molecules and had high coverage rates in different populations.

2.4. Acquisition, analysis, and screening of vaccine candidate sequences

The selected vaccine candidate epitopes were connected by different linkers (no linker, GGGGS, GGGSGGG, EAAAK, GPGPG, AAY, and KK, respectively) to obtain vaccine candidate sequences. Bioinformatics tools were used to analyze and screen the vaccine candidate sequences. PredictProtein was used to predict the amino acid composition, secondary structure composition, solvent accessibility, and gene ontology terms of the candidate sequences. 23 The flexibility and antigenic index of the candidate sequences were predicted using DNAStar software. 24 Expasy ProtParam tool was used to predict the half‐life and stability of the candidate proteins. 25 Finally, through a comprehensive analysis, the best candidate vaccine sequences were selected and will be prepared into vaccines and their immune effects verfied through animal experiments.


NIH Scientists Identify Atomic Structure of Novel Coronavirus Protein

The atomic-level structure of the SARS-CoV-2 spike protein in its prefusion conformation. The receptor binding domain, the part of the spike that binds to the host cell, is colored green.

The atomic-level structure of the SARS-CoV-2 spike protein in its prefusion conformation. The receptor binding domain, the part of the spike that binds to the host cell, is colored green.

NIAID scientists working with investigators from the University of Texas at Austin (UT) identified the atomic structure of an important protein on the surface of the novel coronavirus (SARS-CoV-2, formerly called 2019-nCoV). The findings appear in the peer-reviewed journal Ilm. The authors note that the findings will aid in the design of candidate vaccines and the development of treatments for COVID-19, the disease caused by the new virus, which was first identified in China in December 2019.

Like other coronaviruses, SARS-CoV-2 particles are spherical and have mushroom-shaped proteins called spikes protruding from their surface, giving the particles a crown-like appearance. The spike binds and fuses to human cells, allowing the virus to gain entry. However, coronavirus infection can be prevented or slowed if this process is disrupted.

Scientists in China shared the genome of a SARS-CoV-2 virus isolate to a global database, which NIAID and UT experts used to start their work determining the spike structure. The spike undergoes a massive rearrangement as it fuses the virus and cell membranes. The researchers confirmed that the original spike stabilized in its prefusion conformation is more likely to preserve targets for infection-blocking antibodies induced by a vaccine.

Importantly, the new data supports NIAID’s approach to a gene-based vaccine for COVID-19 and will also be useful in other vaccine approaches including protein-based vaccines and other nucleic acid or vector-based delivery approaches. NIAID scientists designed the stabilized spike antigen based on previous knowledge obtained from studying other coronavirus spike structures. NIAID and the biotechnology company Moderna, based in Cambridge, Massachusetts, are developing a messenger RNA (mRNA) vaccine, which directs the body’s cells to express the spike in its prefusion conformation to elicit an immune response.

The new research also confirms that the structure of the SARS-CoV-2 spike is very similar to that of the coronavirus responsible for the global outbreak of severe acute respiratory syndrome in 2003 that was eventually contained (known as SARS-CoV). However, despite the similarities, the paper shows that some monoclonal antibodies developed to target SARS-CoV do not bind to the new coronavirus, indicating that antibodies that recognize the SARS-CoV from 2003 will not necessarily be effective in preventing or treating COVID-19, the disease caused by the new virus.

Recent reports show that the novel virus and SARS-CoV also bind to the same receptor on the host cell. However, NIAID and UT scientists determined that SARS-CoV-2 binds more easily to this receptor as compared to SARS-CoV, which could potentially explain why SARS-CoV-2 appears to spread more efficiently from human-to-human. However, more data is needed to investigate this possibility, the authors note.

This research was supported by the NIAID Intramural Research Program and a NIAID grant to the University of Texas at Austin (R01-AI127521).


Videoni tomosha qiling: Yangi yilda qanday qilib hayotingizni ozgatirishingiz mumkin? Bu juda oson! (Sentyabr 2022).