Ma `lumot

Antikor reaktsiyasini o'lchaydigan serologik tahlillar

Antikor reaktsiyasini o'lchaydigan serologik tahlillar



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Shaxsda bakteriyalarga tegishli immunitet reaktsiyasi buzilishi mumkinligini hisobga olsak, shu jumladan, infektsiyalangan odamlarda uchraydigan antikorlarning hammasini ishlab chiqarmaslik yoki bakteriyalarga xos bo'lgan antikorlarning etarli miqdorda ishlab chiqarilmasligi --- Hammasi shundaymi? o'ziga xos nuqsonli tizimli infektsiyani aniqlash uchun asos sifatida antikorlardan foydalanilgan serologik testlar? Bunday holda, men test va vakolatli laboratoriya metodologiyasini to'g'ri qo'llashni o'ylayman. Ammo, xuddi shu darajada muhimki, ma'lum bir antikor testining samaradorligini hisobga olish uchun qanday mezonlardan muntazam foydalanish mumkin.


Serologik tekshiruvlar uchun ishlatiladigan antikorlar in vitro sharoitda bajariladi va patogenni yo'q qilish uchun samarali bo'lishi shart emas. Infektsiyalangan odam uchun antikorlar neytrallash, opsonizatsiya yoki komplement tizimini faollashtirishda muhim rol o'ynashi mumkin (batafsilroq ma'lumot uchun Janewayning Immunobiologiyasini tekshiring). Antikorlar mavjud bo'lishi va bu yo'llarda samarali javobni keltirib chiqarmasligining bir qancha sabablari bor.

Masalan, E. Coli O157: H7 Shiga toksinini ishlab chiqaradi va najasda toksin mavjudligini tekshirish uchun immunoassaylar mavjud (1). Kasallikni keltirib chiqarishi uchun faqat oz miqdorda toksin kerak. Toksinga qarshi antikorlar kasallikka chalingan odamlarda kuzatilgan, bu toksin immunitet reaktsiyasi uchun etarlicha kuchli muammo emasligini ko'rsatadi (2).

Siz har bir immunoassayga alohida-alohida murojaat qilishingiz va nima uchun ularning maqsadlarini terapevtikaga aylantirish qiyinligini bilib olishingiz mumkin.


Tizimli infektsiyani aniqlash uchun asos sifatida antikorlardan foydalangan holda o'tkaziladigan barcha serologik testlar o'z nuqsoniga egami?

Yo'q

Har bir diagnostika testi odamning klinik xususiyatlari va ushbu test haqidagi ma'lumotlarga muvofiq talqin qilinishi kerak. Antikorlar uchun sarum testlari farq qilmaydi. Buni muhokama qilish uchun Sesil Medicine 8 va 9 boblariga qarang. Kalit parcha:

Ko'pgina testlar tashxis yoki prognoz haqida aniq javob bermaydi, aksincha noaniqlikni kamaytiradi

Passiv immunizatsiya hollari bundan mustasno (masalan, transfüzyon qilingan IVIG), sarum namunasida o'ziga xos antikorning mavjudligi ham antigen ta'sirini, ham immun javobni ko'rsatadi. Bu aniq nimani anglatadi, shaxsga va testga bog'liq. Odatda, faol yoki surunkali infektsiyani tashxis qilish uchun tanlov usuli emas, Ba'zi antikor testlari ko'plab odamlarda infektsiyaning ajoyib ko'rsatkichidir. Yaxshi misol OIVga qarshi antikor bo'lishi mumkin.

Har qanday diagnostik testda bo'lgani kabi (yana, Sesilga qarang), OIVga qarshi antikor standartga nisbatan baholandi, bu bizga sezgirlikni (sinov kasallik mavjud bo'lganda aniqlashda qanchalik yaxshi) va o'ziga xoslikni (test qanchalik yaxshi ekanligini) beradi. kasallik mavjud bo'lmaganda). Bu mukammal emas (men o'z kareramda bitta noto'g'ri ijobiy natijani ko'rdim) va ta'sir qilishdan keyingi birinchi haftalarda foydali emas, lekin umuman olganda, bu ajoyib diagnostika testidir.

Antikor testlari boshqa ko'plab narsalar uchun qo'llaniladi va yana, har qanday diagnostik testda bo'lgani kabi, ular ham shu maqsadda baholanadi. Ushbu testlarni yuqumli kasalliklarda qo'llashda, gepatit B antikorlari testlari qiziqarli misol bo'ladi, chunki har xil antijenlarga qarshi antikor har xil narsani anglatadi. Yuzaki antikor, masalan, ta'sir qilish va tozalashdan yoki emlashdan immunitetni ko'rsatadi. Asosiy antikor virusning o'ziga ta'sirini ko'rsatadi, chunki yadro antijeni emlashda yo'q. Aksariyat antikor testlarida bo'lgani kabi, antikorlar klassi ham sizga foydali ma'lumot berishi mumkin. IgM antikorlari odatda dastlabki immun javobni ifodalaydi, bunda IgG antikorlari keyingi javobni va klirens yoki surunkali infektsiyani ifodalaydi.


Tizimli infektsiyani aniqlash uchun asos sifatida antikorlardan foydalanadigan barcha serologik testlar tabiatan nuqsonlimi?

Siz nazariy jihatdan o'ylayapsiz. Serologik tahlillar nazariy emas, ular empirik.

Qachonki har qanday tahlil xarakterli bo'lsa, u ma'lum bir natija bilan bog'liq bo'ladi. Serologik tahlillar bundan farq qilmaydi. Maqsadli hodisa bilan kuchli bog'liqlik bor ekan, ular nazariy jihatdan "nuqsonli" (bu nimani anglatsa ham) muhim emas; Agar ular sizga bilishingiz kerak bo'lgan narsani aytishsa, demak ular funksionaldir.

Agar har safar serologik tahlil 40 yoki undan yuqori o'qilsa, odamga infektsiyani ko'rsatsa bo'ladi va har safar 40 dan kam bo'lsa, u himoyalanmagan bo'lsa, tahlilda qanday nazariy muammolar bo'lishi muhim emas. infektsiyani bashorat qilish uchun ishlatilishi mumkin. Masalan, agar har safar keramika avliyosi tuz yig'lasa, bu infektsiya bilan bog'liq bo'lsa, nazariya qanchalik noto'g'ri bo'lsa ham, avliyo testi klinikada juda to'g'ri bo'ladi.

Sizning tahlilingizni infektsiya borligiga qanday bog'laysiz yoki boshqa narsa? Odatda oltin standart sinovlar mavjud bo'lib, ularni muntazam ravishda o'tkazish juda ko'p vaqt talab qiladigan, qiyin yoki qimmat bo'lishi mumkin va serologik tahlil tekshirish uchun o'zaro havola qilinadi va keyin har qanday tartibga soluvchi organ tomonidan tasdiqlanadi, deb umid qilaman ( AQShda, ko'pincha FDA).

Nazariy sabablarni amaliy mulohazalar bilan aralashtirib yubormang.


Multipleks serologiyadan serolomikaga-SARS-CoV-2 prototeomiga qarshi antikorlarning javobiga yangi yondashuv

Rivojlanayotgan SARS-CoV-2 pandemiyasi SARS-CoV-2 epidemiologiyasini baholash uchun aniq va sezgir yuqori serologik tahlillarga shoshilinch ehtiyoj tug'diradi. Shunday qilib, biz SARS-CoV-2 proteomasiga antikor reaktsiyalarini aniqlash uchun floresan boncuk asosidagi SARS-CoV-2 multipleks serologik tahlilini ishlab chiqishni maqsad qilganmiz. SARS-CoV-2 proteomining oqsillari va SARS-CoV-1 oqsillari N va umumiy sovuq koronaviruslar (ccCoVs) rekombinant tarzda ifodalangan. E. coli yoki HEK293 hujayralari. Tahlil samaradorligi COVID-19 holatlari kohortida baholandi (n = Heidelbergdan kasalxonaga yotqizilgan 48 bemor) shuningdek n = ESTHER tadqiqotidan 85 ta yosh va jinsga mos keladigan pandemiyadan oldingi nazorat. Tahlilni tekshirish uyda ishlab chiqarilgan immunofloressensiya va tijorat fermenti bilan bog'liq immunosorbent (ELISA) tahlillari bilan taqqoslashni o'z ichiga oladi. Alomatlar paydo bo'lganidan 14 kun o'tgach, SARS-CoV-2 N va boshoq oqsilining retseptorlari bilan bog'lanish sohasi bo'lgan COVID-19 bemorlarida 100% sezuvchanlikka (95% CI: 86-100%) erishildi. Bu algoritm bilan olingan o'ziga xoslik 100% (95% CI: 96-100%) edi. CcCoVs N ga antikor javoblari juda yuqori edi va ular SARS-CoV-2 N ga mos kelmadi, qo'shimcha SARS-CoV-2 oqsillarini kiritish, shuningdek M, A va G immunoglobulin (Ig) sinflarini alohida baholash. kasallikning rivojlanishi va antikorlarga javob berish jarayonini tahlil qilish. Yangi ishlab chiqilgan SARS-CoV-2 multipleks serologik tekshiruvi SARS-CoV-2 sero-pozitivligini aniqlash uchun yuqori sezuvchanlik va o'ziga xoslikka erishdi. Uning yuqori o'tkazish qobiliyati aholiga asoslangan yirik tadqiqotlarda SARS-CoV-2 epidemiologik tadqiqotlarini o'tkazish imkonini beradi. Panelga qo'shimcha patogenlarni kiritish va Ig izotiplarini alohida baholash, shuningdek, SARS-CoV-2 sero-tarqalishidan tashqaridagi tadqiqot savollariga javob berishga imkon beradi.

Kalit so'zlar: SARS-CoV-2 multipleks serologiyasi.

Manfaatlar to'qnashuvi bayonoti

Mualliflar hech qanday manfaatlar to'qnashuvini e'lon qilmaydilar.

Raqamlar

O'qish sxemasi. Covid19 holatlari…

O'qish sxemasi. Mart oyi orasida Geydelberg universiteti klinikalarida COVID-19 holatlari qabul qilingan ...

SARS-CoV-2 oqsillariga antikor javoblari…

SARS-CoV-2 oqsillariga antikor reaktsiyalari n = 85 pandemiyadan oldingi nazorat va n ...

SARS-CoV-2 oqsillariga antikor javoblari ...

SARS-CoV-2 oqsillariga N, S1, S2 va ularga tegishli bo'laklarga (N-EP3,…


SARS-CoV-2 ga antikor javobini o'lchash

SARS-CoV-2 vaksinalari butun dunyo bo'ylab tarqatilayotganda, klinisyenlar uchun vaqt o'tishi bilan tananing immunitetini o'lchash, himoya qanchalik samarali va qancha davom etishini tushunish muhimroq bo'ladi. Antikor testlari COVID-19 ga qarshi kurashda muhim rol o'ynaydi, bu infektsiya yoki emlashdan keyin antikorlarning javobini aniqlash va o'lchashga yordam beradi.

Pandemiyada antikor testlarini qo'llash usullari haqida ko'proq ma'lumot olish uchun, Texnologiya tarmoqlari Bekman Koulterning immunoassay va klinik kimyo bo'yicha Yevropa katta menejeri Hizer-Read Xarper bilan suhbatlashdi. Heather, shuningdek, miqdoriy antikor testlarining afzalliklarini ta'kidladi va IgG va IgM ni aniqlash nima uchun qimmatli bo'lishi mumkinligini muhokama qildi.

Anna MakDonald (AM): Antikor testlari COVID-19 ga qarshi kurashda qanday rol o'ynashini tushuntirib bera olasizmi?

Xizer Read-Harper (HRH):
Antikor testlari, shuningdek serologik testlar, bizga odamning immunitet holatining bosqichlarini aytib beradi va antikorlarning mavjudligini qidiradi. Odatda qonda o'lchanadigan ikki xil antikorlar mavjud: IgM antikorlari, umuman olganda, tananing virusga qarshi birinchi himoya chizig'i, IgG antikorlari esa virusga nisbatan barqaror immunitetli javob beradi.

Antikor testlari odamning SARS-CoV-2 virusiga qarshi immunitet darajasini aniqlashda hal qiluvchi rol o'ynaydi. Bunday tushuncha infektsiya xavfi yuqori bo'lganlarni va ilgari yuqtirgan va ish yoki universitetga xavfsiz qaytishi mumkin bo'lganlarni aniqlashga yordam beradi.

Keng miqyosli testlar, shuningdek, aholining immunitet holati haqida umumiy ma'lumot beradi va bu virusni kelajakda boshqarishga yordam beradi.

Vaktsina dasturlari yaxshi boshlangan bo'lsa, bu tahlillar vaqt o'tishi bilan insonning emlashga qarshi immunitetini va immunitetni qancha vaqtgacha saqlash mumkinligini tushunishda muhim rol o'ynaydi.

AM: Antikorlarning har bir turini aniqlashning afzalliklari nimada?

HRH:
Infektsiyadan keyingi dastlabki kunlarda faqat virusni aniqlash mumkin. Bu tez ko'payadi va boshqalarga osonlikcha uzatiladi. Bu vaqtda virusni aniqlash uchun molekulyar diagnostik PCR va antigen testlaridan foydalanish mumkin. Shaxsning immun tizimi infektsiyaning o'tkir bosqichining bir qismi sifatida virusli yukga javob bera boshlaydi. Bu virusga qarshi kurashish uchun IgM antikorlari ishlab chiqariladi va ko'payadi va yaqinda infektsiyalangan bemorlarni aniqlash uchun ishlatilishi mumkin. Taxminan bir hafta o'tgach, infektsiyaning tiklanish bosqichiga erishiladi va IgG ishlab chiqariladi va ko'payadi, IgM esa pasayishni boshlaydi. Biroq, talab qilinadigan vaqt har bir kishining javobiga qarab o'zgaradi.

INFEKTSIONning ushbu tamoyillariga rioya qilgan holda, biz IgM va IgG tahlillaridan odamning immunitet holatini va infektsiyaning bosqichini tushunish uchun foydalanishimiz mumkin, ammo IgG kelajakdagi infektsiyaning ta'sirini kamaytirish uchun zarur immunitetni ta'minlaydi deb hisoblanadi.

AM: Bekman Kulter yaqinda Access SARS-CoV-2 IgG II antikorlarini tahlil qilishni boshladi. Sinovning qanday ishlashi haqida umumiy ma'lumot bera olasizmi?

HRH:
Access SARS-CoV-2 IgG II tahlili oldingi infektsiyaga javoban koronavirus oqsilining retseptorlari bilan bog'lanish sohasiga yo'naltirilgan IgG antikorlarini o'lchaydi. U bemor namunalaridan IgG antikorlarini olish uchun magnit zarralardagi immobilizatsiya qilingan virus antijenlaridan foydalanadi va ularni anti-IgG antijismlari yordamida aniqlaydi.

Keyin tahlil 2.00-450 AU/ml gacha bo'lgan raqamli natijani hamda SARS-CoV-2 IgG antikorlari uchun sifatli natijani beradi. Sinov simptom boshlanganidan 15-60 kun o'tgach 99,9% o'ziga xoslik va 98,9% sezuvchanlikka ega. Access SARS-CoV-2 IgG II tahlili Tasodifiy kirish rejimida (RAM) ishlatilishi va partiyaviy ishlovsiz mavjud ish oqimlariga muammosiz birlashtirilishi mumkin. Tahlil, shuningdek, turli xil Beckman Coulter analizatorlari, jumladan, katta laboratoriyalar uchun mo'ljallangan yuqori samarali DxI 800, o'rta o'lchamdagi laboratoriyalar uchun DxI 600 va kichikroq laboratoriyalar va sog'liqni saqlash klinikalari uchun Access 2 analizatorlari bilan ham qo'llanilishi mumkin.

AM: Nima uchun IgG antikorlari nishon sifatida tanlangan spike oqsilining retseptorlari bilan bog'lanish sohasiga yo'naltirilgan?

HRH:
Koronavirus to'rt xil oqsilga ega: membrana, konvert, nukleokapsid va boshoq. Bu boshoqsimon oqsil koronavirusning asosiy sirt oqsili bo'lib, xost hujayralariga kirishga vositachilik qiladi. Spike oqsilining retseptorlari bilan bog'lanish sohasi (RBD) angiotensinga aylantiruvchi ferment 2 yoki ACE2 deb ataladigan nafas olish hujayralaridagi retseptorlarga kuchli bog'lanadi. ACE2 inson hujayrasining kirish retseptoridir va virusli hujayra membranasi inson hujayra membranasi bilan birlashgandan so'ng, virus genomi inson hujayralariga kiradi va infektsiyani boshlaydi.

Spike oqsilining RBD bilan bog'langan IgG antikorlari virusga immun javobini tushunish uchun kalit bo'lishi mumkin, deb ishoniladi. in vitro tadqiqotlar shuni ko'rsatdiki, bu antikorlarning mavjudligi SARS-CoV-2 infektsiyasini neytrallashini ko'rsatishi va virusni hujayralarga zarar etkaza olmasligini ko'rsatishi mumkin.

Beckman Coulter SARS CoV-2 IgM va IgG II tahlillari potentsial himoya qiluvchi antikorlarni aniqlash uchun spike oqsilining retseptorlari bilan bog'lanish sohasiga qaratilgan.

AM: Antikorlarni miqdoriy tekshirishning afzalliklari nimada?

HRH:
Ushbu pandemiya boshida mavjud bo'lgan ko'plab serologik tahlillar sifatli xarakterga ega edi. Bu faqat ijobiy yoki salbiy natijaga olib keldi. Shuning uchun natijalar faqat klinisyenlarga bemorning virusga duchor bo'lganligi haqida ma'lumot berdi. Natijada, vaqt o'tishi bilan immunitet reaktsiyasi haqida aniq tasavvur berilmadi.

Miqdoriy tahlillar qondagi antikorlar darajasini aniqlay oladigan raqamli qiymatni beradi. Bekman Koulterning SARS CoV-2 IgG II kabi tahlillari klinisyenlarga miqdoriy bazani o'rnatish orqali bemorning antikor darajasidagi tendentsiyalarni kuzatish va shu tariqa vaqt o'tishi bilan odamning virusga qarshi immunitetining nisbiy o'zgarishini baholash imkonini beradi.

Xezer-Rid Xarper texnologiya tarmoqlari bo'yicha ilmiy yozuvchi Anna MakDonald bilan gaplashar edi.


Usullari

Ma'lumotlar va namuna olish

Bezgak infektsiyasining dinamikasini va yillik ommaviy dori vositalarining (MDA) ta'sirini tushunish uchun 2013 yildan 2015 yilgacha beshta ma'muriy hududdagi 12 qishloqda - G'arbiy Sohil (WCR), Shimoliy Bank (NBR), Quyi mintaqada istiqbolli kohort tadqiqoti o'tkazildi. Daryo (LRR), Markaziy daryo (CRR) va Yuqori daryo (URR) mintaqalari - Mwesigwa va boshqalar tomonidan tasvirlangan. [13]. Plasmodium falciparum (Pf) polimeraza zanjiri reaktsiyasi (PZR) bilan o'lchangan tarqalish Markaziy daryo va Yuqori daryo mintaqalarida mos ravishda 2,27 dan 19,60% gacha bo'lgan (1-rasm). Tadqiqotda 6 oylikdan katta fuqarolar ro'yxatga olindi va har yili iyun -dekabr oylarida bezgak kasalligi tarqalish davrida, 2014 yilning aprel oyidagi qurg'oqchilik mavsumida va 2014 yil may va iyun oylarida MDA qo'llanilishidan oldin oylik so'rovlar o'tkazildi. (2 -rasm). Gemoglobinni aniqlash va filtr qog'ozida (Whatman 3 Corporation, Florham Park, NJ, AQSh) molekulyar va serologik tahlil qilish uchun individual barmoqli qon namunalari yig'ildi. Bezgakning klinik holatlariga tibbiy muassasalarda simptomlar bilan murojaat qilgan shaxslar (masalan, passiv holatni aniqlash) yoki qishloqlarda tadqiqot hamshiralari tomonidan aniqlangan, oldingi 24 soat ichida isitma yoki aksillar harorati ≥ 37,5 °C va ijobiy tezkor diagnostika testi (RDT) bo'lgan shaxslar kiradi. natija (Paracheck Pf, Orkide biomedikal tizimi, Hindiston).

Bezgak yuqish dinamikasi xaritasi PCR tarqalishi bo'yicha mintaqalar va qishloqlarni o'rganish

O'qish muddatlari. Bezgakni yuborish dinamikasini o'rganish vaqt jadvalida qora va yashil rang ko'rsatilgan. G'arbiy qirg'oq va daryoning yuqori hududlari uchun serologik tadqiqot vaqt jadvali ko'k rangda ko'rsatilgan (mos ravishda past va o'rtacha uzatish sozlamalari). Serologik tahlil G'arbiy qirg'oq mintaqasidagi N'demban va Besseda butun qishloq bo'ylab oylik so'rovlardan olingan namunalar bo'yicha o'tkazildi (a), Yuqori daryo mintaqasidagi Njayyal va Madina Samako (b) va bezgak yuqish dinamikasini o'rganish paytida ijobiy tezkor diagnostika testi (RDT) yoki polimeraza zanjiri reaktsiyasi (PCR) natijasi bo'lgan shaxslardan uzunlamasına namunalar. Serologik tahlil uchun namunalar Luminex MAGPIX oylik so'rov namunalarida qayta ishlandi mikroskopiya, tezkor diagnostika testlari (RDTs) va polimeraza zanjiri reaktsiyasi (PCR) yordamida tahlil qilindi.

Bu erda keltirilgan serologik tadqiqotlar bezgakning tarqalish dinamikasini o'rganishning bir qismi bo'lib, mavjud bo'lgan barcha namunalarni o'z ichiga oladi.n = 4599) jami 1795 kishidan iborat to'rtta qishloqda o'tkazilgan oylik so'rovlar tanlovidan (2 -rasm). G'arbiy qirg'oq mintaqasida (Besse va N'Demban), serologik tahlil uchun qayta ishlangan namunalar 2013 yil iyul oyida uzatish mavsumi boshida o'tkazilgan so'rovlardan olingan.N. = 534) va mavsum oxirida 2013 yil dekabr oyida (N. = 524). Yuqori daryo mintaqasida (URR) serologik tahlil 2013 yil iyul oyida Njayal va Madina Samakoda to'plangan barcha namunalarni o'z ichiga olgan.N. = 778), 2013 yil dekabr (N. = 628), aprel (quruq mavsum) 2014 (N. = 799) va 2014 yil dekabr (N. = 737) (1 -jadval). Bu hududlar ikkita uzatish intensivligining haddan tashqari chegaralarini ifodalaydi, oylar uzatish mavsumining boshlanishi va oxirida tanlanadi. Klinik PCD holatlaridan olingan namunalar tadqiqot ishtirokchisining identifikatsiya kodi bilan muntazam oylik so'rovlar davomida to'plangan bir xil shaxslardan olingan namunalar bilan bog'langan. Shaxsiy darajadagi antikor reaktsiyalari va bir vaqtning o'zida klinik yoki o'zaro bog'liqlikni aniqlash uchun Pf infektsiya, yuqorida tavsiflanganidek, G'arbiy Sohil mintaqasi va Yuqori daryo mintaqasidagi butun qishloq bo'ylab oylik so'rov namunalari RDT yoki PCR testining ijobiy natijasini boshdan kechirgan yoki istalgan nuqtada klinik alomatlar bilan namoyon bo'lgan 316 kishidan olingan 1244 uzunlamasına namunalarning qo'shimcha kichik to'plami bilan birlashtirildi. bezgak tarqalishi dinamikasini o'rganish davomida (2-rasm). Ushbu shaxslar uchun tadqiqotdan olingan barcha mavjud namunalar ijobiy RDT yoki PCR test natijalaridan oldin va keyin ularning serologik javoblarini bo'ylama bo'ylab olish uchun qayta ishlandi.

Ushbu tadqiqot Gambiya hukumati/MRC etika bo'yicha qo'shma qo'mitasi (SCC1318) tomonidan tasdiqlangan. Og'zaki rozilik birinchi bo'lib qishloq sensitizatsiyasi yig'ilishlarida, so'ngra barcha ishtirokchilar uchun individual yozma xabardor qilingan rozilik bilan olingan. Ota -onalar/vasiylar 17 yoshga to'lmagan bolalarga yozma rozilik berishgan va 12 yoshdan 17 yoshgacha bo'lgan bolalardan rozilik olingan.

Antigenlarni tanlash va dizayn

Antijenler bolalarda bezgak infektsiyasi bilan bog'liqligi asosida in vitro transkripsiya va tarjima (IVTT) oqsil mikroarrayida 856 nomzodning dastlabki ekranidan tanlangan [11]. Antijenlar hosil qilingan va ifodalangan Escherichia coli (E. coli) glutatyon S-transferaza (GST) belgili termoyadroviy oqsillari sifatida [20,21,22], bundan mustasno. PfAMA1 da ifodalangan Pichia pastoris histidin bilan belgilangan oqsil sifatida [15]. Proteinlarni tozalash, afsuski, GST- va uning tegli oqsillari uchun afinitivlik xromatografiyasi (Glutation Sepharose 4B, GE Healthcare Life Sciences) yoki HisPur Ni-NTA (Invitrogen) yordamida amalga oshirildi va Bredford yordamida antijen kontsentratsiyasi, sifati va tozaligi baholandi. tahlil va SDS-PAGE. Transformatsiyalanmagan madaniyatning bakterial lizati E. coli fon reaktivligini yo'qotish uchun tahlil buferlarida ishlatilgan E. coli bezgak maqsadli oqsillarga xos bo'lmagan oqsillar.

Bundan tashqari, GST bilan belgilangan termoyadroviy oqsillarga qarshi bezgaksiz reaktivlikni hisobga olish uchun, GST-o'ziga xos immunoglobulin (IgG) reaktsiyalarini aniqlash va o'ziga xos bo'lmagan bog'lanish uchun to'g'rilash uchun GST bilan bog'langan boncuklar kiritilgan. Laboratoriya ishlovidan so'ng, GST antikorlari javoblari 1000 median floresans intensivligi (MFI) dan yuqori bo'lgan 71 ishtirokchi namunalari bor edi, ular bezgakka xos bo'lmagan potentsial bog'lanishni ko'rsatadigan chegara sifatida belgilangan va keyingi tahlillardan chiqarib tashlangan. Tetanoz toksoidi (TT, Massachusets Biologik Laboratoriyalari), shuningdek, emlangan gambiyaliklar bu oqsil maqsadiga antikor javobini ko'rsatishini taxmin qilib, ichki ijobiy nazorat sifatida kiritilgan. Antijen konstruktsiyalari va ulanish shartlarining qisqacha tavsifi 2 -jadvalda keltirilgan.

Laboratoriya jarayonlari

Wu va boshqalarda tasvirlangan Luminex MAGPIX protokoli yordamida antigenga xos antikor javoblari miqdori aniqlandi. 2019 [23]. Plazma 6 mm quritilgan qonli dog'lardan (4 mkl to'liq qon ekvivalenti) ajratilgan va xona haroratida fosfat tamponlangan tuzli eritma (PBS) (pH 7.2), 0,05% natriy azid va 200 ml oqsilni tozalash tamponida bir kechada chayqatilgan. 0,05% Tween-20, dastlabki 1:50 namunali suyultirish. Tahlilni qayta ishlashdan bir kun oldin namunalar o'ziga xos bo'lmagan bog'lanishning oldini olish uchun 10 mkl 1:50 oldindan suyultirish namunasi va 90 mkl blokirovka qiluvchi bufer B yordamida yakuniy 1:500 suyultirishgacha suyultirildi (1xPBS, 0,05% Tween, 0,5). % sigir zardobi albumin (BSA), 0,02% natriy azid, 0,1% kazein, 0,5% polivinil spirti (PVA), 0,5% polivinil pirolidon (PVP) va 1500 mkg/ml E. coli ekstrakti). Salbiy va ijobiy nazoratlar 1 kun oldin B buferida inkubatsiya qilingan, salbiy nazorat 1: 500 nisbatda va Gambiya to'plangan musbat boshqaruvlari 6-punktli 5-marta ketma-ket suyultirishda (1: 10–1: 31,250). Ijobiy nazorat Gambiyadagi bezgakka qarshi giper-immunitetli shaxslardan olingan 22 ta zardob namunalaridan iborat hovuzga asoslangan bo'lib, salbiy nazorat sifatida bezgakka chalingan Yevropadagi o'nta individual plazma namunalari ishlatilgan.

Mwesigwa va boshqalar tomonidan ta'riflanganidek, diagnostik PCR uchun namunalar tayyorlangan. [13]. Qisqacha aytganda, QIAxtractor avtomatlashtirilgan robot (Qiagen) yordamida DNK uchta 6 mm DBSdan olingan. Manfiy va ijobiy (3D7) nazorat mos ravishda o'zaro kontaminatsiya va DNK ekstraktsiya samaradorligini nazorat qilish uchun kiritilgan. DBS 60 °C da 1 soat davomida to'qimalar hazm qilish tamponida inkubatsiya yo'li bilan lizislangan va hazm qilingan eluatlar qo'lga olish plitalariga qo'llanilgan, yuvilgan va DNK 80 mkl ga elutsiya qilingan. Ekstraksiya qilingan DNK (4 mkl) ko'p nusxani kuchaytirib, ichki PCRda ishlatilgan. Plazmodiy tur va turlarga xos primerlardan foydalangan holda ribosomal RNK genlarining ketma -ketligi [24]. Barcha PCR mahsulotlari QIAxcel kapillyar elektroforez tizimi (Qiagen) yordamida skrining kartriji va 15-1000 bp-hizalama belgisi yordamida ishga tushirildi. Natijalar eksport qilindi va QIAxcel ikkilik skoring funksiyasidan foydalangan holda va gel tasvirlarini vizualizatsiya qilish orqali qo'lda ikki marta baholandi va uchinchi mustaqil o'quvchi tomonidan tafovutlar baholandi. Hamma o'quvchilar so'rov ishtirokchilarining ma'lumotlarini ko'r qilishdi.

Statistik tahlillar

Ma'lumotni tahlil qilish, sero-insidensiyaning potentsial belgisi sifatida beshta antijenga ega bo'lgan IgGning umumiy darajasiga asoslangan [11]-erta transkripsiya qilingan membrana oqsili 5 (Etramp5.Ag1), gametotsit eksport oqsili 18 (GEXP18), issiqlik zarbasi oqsili 40 (HSP40.Ag1) , eritrotsitlarni bog'lovchi antigen 175 RIII-V (EBA175) va retikulotsitlarni bog'lovchi oqsil homologi 2 (Rh2.2030). Antikorlarga uzoq muddatli javob berish bilan bog'liq uchta antijen-P. falciparum Merozoit sirt antijeni 1 19-kDa karboksi-terminalli hudud (PfMSP119), P. falciparum apikal membrana antijeni 1 (PfAMA1) va P. falciparum glutamatga boy protein, mintaqa 2 (PfGLURP. Uzoq muddatli antikorlar bilan bog'liq antijenler uchun (PfMSP119, PfAMA1, PfGLURP.R2), endemik mintaqada yashovchi, avval bezgak bilan kasallangan, lekin yaqinda yuqmagan shaxslar, endemik bo'lmagan hududlardagi bezgak bilan kasallanmagan shaxslardan sezilarli darajada yuqori bo'lgan qoldiq antikor darajalariga ega bo'lishi mumkin. Shunday qilib, ikki komponentli Gauss aralashmasining modeli, o'rtacha floresan intensivligi (MFI) birliklarida ifodalangan, salbiy va musbat antikor darajalarining taqsimlanishini aniqlash uchun ishlatilgan. Sero-pozitivlik chegaralari MFIning o'rtacha log qiymatlari va manfiy taqsimotning ikkita standart og'ishi sifatida aniqlandi [25]. Aralashmalarning modellari "" yordamida baholandi.oddiy aralash"Funktsiyasida"mixtoolsR 3.6.1 versiyasida v1.0.4 paketi. Qisqa umrli antikorlar bilan bog'liq bo'lgan antijenler uchun, agar infektsiyadan keyingi antikorlar darajasining tezroq parchalanishini hisobga olib, populyatsiyada antikor javoblarining bimodal taqsimlanishining statistik dalillari kuchli bo'lmasa-Etramp5.Ag1, GEXP18, HSP40.Ag1, EBA175 va Rh2 .2030 - sero-pozitivlik chegarasi o'rtacha MFI jurnali va salbiy nazorat sifatida ishlatiladigan 71 ta bezgak bilan kasallanmagan Evropa qon donorlarining uchta standart og'ishlari bilan aniqlandi.

Antikor reaktsiyasi va klinik bezgakning bir vaqtning o'zida (sog'liqni saqlash muassasasi orqali yoki hamshiralar o'qishi orqali passiv tarzda aniqlanadi) yoki asemptomatik o'rtasidagi individual darajadagi bog'liqlik P. falciparum infektsiya (oylik so'rov namunalaridan PCR yordamida faol aniqlangan) umumlashtirilgan taxminiy tenglamalar (GEE) yordamida baholandi. Tahlillar yosh guruhiga (1–5 yosh, 6–15 yosh va 15 yoshdan katta) va oxirgi 24 soat ichida insektitsid bilan ishlov berilgan uzoq muddatli tarmoqlardan (LLIN) foydalanishga moslashtirildi va birikma darajasida klasterlash imkonini berdi. bu erda birikma - bu asosiy qarorgoh atrofida joylashgan uy xo'jaliklarining yig'indisi. Antikor reaktsiyasi va infektsiya ehtimoli o'rtasidagi bog'liqlik yosh guruhlari bilan o'zaro ta'siri uchun baholandi. Uzunlamasına namunalar to'plamiga asoslanib, antikor reaktsiyasi va oxirgi 4 oydagi yaqinda infektsiya o'rtasidagi individual darajadagi bog'liqlik (bir vaqtning o'zida joriy infektsiyadan farqli o'laroq) yosh guruhiga moslashtirilgan GEE modeli yordamida, LLIN foydalanish uchun ham baholandi. , va yuqoridagi kabi birikma darajasida tasodifiy effektlar.

GEE modelidan foydalanib, klinik bezgak yoki asemptomatik infektsiyaning individual darajadagi ehtimoli sero-pozitiv odam bilan bir xil birikmada yashash bilan bog'liqligi baholandi. Xuddi shunday, individual infektsiya ehtimoli va aralash darajadagi sero-tarqalish o'rtasidagi bog'liqlik (& lt 50% yoki & gt 50%) yosh guruhlari va LLINdan foydalanish uchun moslashtirilgan aralash effektli umumlashtirilgan chiziqli model yordamida baholandi. bu ham geografik tafovutlarning uzatilish intensivligidagi potentsial ta'sirini hisobga oladi. Hisob-kitoblar kichik birikmalarning sero-tarqalishi bilan bog'liq bo'lmasligini ta'minlash uchun tahlil tarkibidagi shaxslar soniga qarab o'lchandi (ularning sero-maqomi baholandi) va faqat kamida to'rt kishidan iborat birikmalar kiritilgan. Modellar R versiyasi 3.14 da "geeM" va "lme4" paketlaridan foydalangan holda moslashtirilgan.

2013 yil iyul va dekabr oylarida G'arbiy qirg'oq va Yuqori daryo mintaqasida 2 yoshdan 10 yoshgacha bo'lgan bolalar o'rtasida qishloq darajasida sero-tarqalishi (n = 1001) barcha yoshdagi klinik va bilan solishtirilgan P. falciparum o'sha oylardagi infektsiya bilan kasallanish darajasi, bu haqda oldinroq Mwesigva va boshqalar xabar bergan. [13]. Oylik klinik va P. falciparum infektsiyaning tarqalish darajasi mos ravishda yangi klinik holatlar soni sifatida aniqlandi P. falciparum infektsiyalar (oldingi oylik so'rovda PCR-manfiy bo'lgan PCR-musbat shaxslar) xavf ostida bo'lgan umumiy yilga bo'lingan (PYAR). Bu yosh diapazoni boshqa kuzatuv ko'rsatkichlariga, masalan, yillik parazit indeksiga (API) mos kelishi uchun tanlangan, odatda bu yosh guruhini qo'riqchi populyatsiyasi sifatida ishlatadi. Har bir antijen uchun qishloq darajasidagi kasallanish darajasi va sero-tarqalish o'rtasidagi munosabatlarning mustahkamligi Pirson korrelyatsiya koeffitsienti yordamida baholandi. 2014 yil aprel va dekabr oylari ma'lumotlari tahlilga kiritilmagan, chunki klinik kasallik va Pf Ushbu so'rovlar natijasida infektsiya darajasi hali ma'lum qilinmagan.


SARS-CoV-2 multipleks serologik tahlillari

ProcartaPlex serologik tahlillari

SARS-CoV-2 infektsiyasi paytida IgA, IgM va IgG antikorlarini ishlab chiqaradigan immunitet reaktsiyasini rag'batlantirish uchun asosiy antijenlar bo'lib xizmat qiladigan oqsillarga nukleokapsid (N), boshoq (S) oqsili va boshoq oqsilining sub-hududlari kiradi. retseptorlarni bog'lovchi domen (RBD) va S1 hududlari sifatida. Nukleokapsid (N) oqsili SARS-CoV-1 va SARS-CoV-2 (1) orasida eng yuqori homologiyaga (90%) ega. SARS-CoV-2 pandemiyasining dastlabki bosqichida mavjud bo'lgan serologik testlar to'plami nukleokapsidga qarshi antikorlarni aniqlash uchun ishlab chiqilgan bo'lib, ular o'zaro o'zaro reaktivlikni va shuning uchun SARS-CoV-1 (1) bilan kasallanganlar uchun noto'g'ri noto'g'ri ijobiy ko'rsatkichlarni ko'rsatdi. . SARS-CoV spike (S) oqsili tojga o'xshash (shuning uchun toj) ko'rinishini hosil qilish uchun trimerlangan tuzilishga yig'iladi va S1 va S2 bo'linmalaridan iborat. S1 ichida, C-terminali pastki domenida joylashgan retseptorlarni bog'lovchi domen (RBD), N-terminali domeniga qaraganda, SARS-CoV va SARS-CoV-2 o'rtasida yuqori identifikatsiyaga (74%) ega, bu ko'rinishga mos keladi. SARS-CoV-2 ACE2-ni SARS-CoV (2) kabi xost hujayralarga kirish uchun retseptor sifatida ishlatishi mumkin. RBD SARS-CoV-2 boshoqli oqsilining immunodominant joylaridan biri sifatida aniqlangan, boshoq oqsiliga qarshi antikorlar neytrallash bilan yaxshi bog'liq. Bundan tashqari, noto'g'ri ijobiy natijalarni istisno qilish uchun serologik o'zaro faoliyatni endemik va mavsumiy koronaviruslar bilan tekshirish muhimdir. Inson koronavirusi Ig Total 11-Plex ProcartaPlex paneli to'rtta SARS-CoV-2 antikorlarini (Spike trimer, S1 subunit, RBD va Nucleocapsid), oltita koronavirus shtammlarini (SARS-CoV-1, MERS, CoV-NL63, CoV) skrining qilish imkonini beradi. -KHU1, CoV-229E, CoV-OC43) va bitta salbiy nazorat Luminex xMAP texnologiyasidan foydalangan holda. Bir vaqtning o'zida SARS-CoV-2 ga qarshi antikorlarni va ular bilan bog'liq koronavirusga qarshi antikorlarni aniqlash plazma yoki sarum namunalari yordamida to'liq va yaxlit ma'lumotlar to'plamini taqdim etish uchun vaqtni tejash imkonini beradi.

Shakl 1. SARS-CoV-2 antijenlari uchun 39 ta Covid PCR (+) va 168 ta sog'lom PCR (-) nazoratidan olingan skrining natijalari. Natijalar spike timer uchun aniqlangan antikor darajalarini ko'rsatadi, S1, RBD va Nukleokapsid antigenlari PCR (+) uchun yuqori antikor darajalari va PCR (-) namunalari uchun past antikor darajalarining kutilgan natijalariga mos keladi.


SARS-CoV-2 tahlil hujjatlari va manbalar

Hujjatlar

Bio-Plex Pro inson SARS-CoV-2 serologik tahlillari boʻyicha qoʻllanma (PDF 601 KB)

Ushbu qo'llanmada batafsil ko'rsatmalar, ish oqimlari, to'plamlar tarkibi, saqlash va muammolarni bartaraf etish bo'yicha maslahatlar bilan tahlil haqida ko'proq bilib oling.

Bio-Plex Pro Human SARS-CoV-2 serologik tahlillari tez qo'llanmasi (PDF 68 KB)

Ushbu tezkor qo'llanma yordamida to'liq 96 quduqli Bio-Plex SARS-CoV-2 serologik tahlil plitasini tayyorlash va ishga tushirishni bilib oling.

Bio-Plex Pro Human SARS-CoV-2 N/RBD/S1/S2 4-plex panelli mahsulot haqida ma'lumot varaqasi (PDF 439 KB)

Ushbu mahsulot ma'lumot varag'idan tahlil xususiyatlari va o'zaro reaktivlik natijalari kabi mahsulot tafsilotlarini oling.

Bio-Plex Pro Inson IgG SARS-CoV-2 yarim miqdoriy tahlil protokoli (PDF 96 KB)

Bio-Plex Human IgG SARS-CoV-2 N/RBD/S1/S2 Serologiya tahlillari bilan foydalanish uchun ushbu yarim kantitativ protokol yordamida natijalarni chiqaring.

Bio-Plex Multiplex tizimlari risolasi (PDF 15.9 MB)

Bio-Plex multipleks immunoassaylari, asboblari va dasturiy ta'minotidan foydalanib, natijalar va namunalarga vaqtni qanday kamaytirish mumkinligi haqida bilib oling.

Standart egri chiziqdan foydalangan holda Bio-Plex Pro inson IgG SARS-CoV-2 serologik tahlillari (PDF 420 KB)

VIROTROL SARS-CoV-2 serologik nazorati Bio-Plex Pro Human IgG SARS-CoV-2 serologik tahlillari yordamida SARS-CoV-2 va ndashspecific IgG antikorlari miqdorini aniqlash uchun ma'lumot sifatida foydalanish uchun qanday tasdiqlanganligini bilib oling.

Bio-Plex Analyte Guide (PDF 2.2 MB)

Bio-Plex platformasida mavjud bo'lgan turli multipleks immunoassaylar va panellarni o'rganing. Ilovangizga mos keladigan panelni tanlash uchun tahlilning ishlash xususiyatlarini va namuna ma'lumotlarini baholang.

Veb -seminarlar

Aberrant sitokin faolligining COVID-19 ga xos immun javobidagi roli

In this webinar, we discuss early research and nascent hypotheses regarding the pathophysiology of SARS-CoV-2 induced COVID-19 disease by evaluating cytokine and chemokine profiles, the role of chronic inflammation in comorbidities, and the arc of immune resolution of historical virulent pathogens, such as SARS and MERS.

Multiplex Immunoassays in Vaccine Research and Development

Get the most data out of your sample, without spending time on individual ELISAs. Learn how multiplex assays are being used on the front lines to understand patient immune response during infection, and discuss the most commonly asked questions around targets, panels, and multi-plate data analysis.

Vaccine Development and Manufacturing

Tips for overcoming developmental hurdles, technologies that can shorten timelines, and novel tools for manufacturing and quality control.

Immunological Response Factors to SARS‑CoV‑2 in Acquired Immunity

In this webinar, we will be discussing the immune response to SARS‑CoV2, both in the context of natural exposure to the virus as well as induced immunity from vaccination. We will also investigate the relationship between symptom severity and the longevity of acquired immunity.


SARS-CoV-2 Assays To Detect Functional Antibody Responses That Block ACE2 Recognition in Vaccinated Animals and Infected Patients

FIG 1 ACE2 receptor expression and affinity. (A) Overview of soluble ACE2 receptor design (ACE2-IgHu). (B) Affinity of SARS CoV-2 receptor binding domain for immobilized ACE2-IgHu assessed by SPR (27 nM) curves are concentrations of RBD X, Y, and Z. (C) Affinity of ACE2-IgHu for immobilized SARS CoV-2 full-length spike protein assessed by ELISA. Optimal concentration of ACE2-IgHu for competition assays (∼EC90, red arrow) requires high signal without excess receptor present. FIG 2 ACE2 receptor competition assay development. (A) Competition ELISA schematic displaying immobilized anti-His pAb (red) capturing His6×-tagged SARS-CoV-2 spike protein (rainbow). Premixed ACE2-IgHu (green, blue) at a constant concentration with a dilution series of competitors (green, red) is added, and anti-human HRP (green) determines the amount of ACE2-IgHu remaining in the presence of competitors through a colorimetric readout. (B) Four constant concentrations of ACE2-IgHu were tested with various concentrations of the ACE2-IgMu competitor to establish an optimal ACE2-IgHu concentration which displays a full blocking curve (red, 0.10 μg/ml) from the competitor dilution series while retaining a wide range in signal. (C) Pseudovirus neutralization curves for a control antibody (non-SARS-CoV-2) in red and for ACE2-IgHu in blue.

Animal IgG and serological competition.

FIG 3 Animal IgG and serological competition. (A) IgG and serological competition schematic. Anti-His pAb captures SARS-CoV-2 spike protein. Immunized sera or IgG from small animals are used as competitors to block ACE2-IgHu receptor binding when premixed. ACE2-IgHu remaining is determined from an anti-human-HRP colorimetric readout. (B) IgGs present in a vaccinated BALB/c mouse block ACE2-IgHu binding with greater effect when the full-length SARS-CoV-2 S1-S2 spike protein is immobilized versus the S1 subunit by itself. (C) Area under the concentration-time curve (AUC) schematic displaying the larger area for uninhibited ACE2 binding versus the area from curves showing competition with ACE2. (D) AUC of IgGs purified from immunized rabbit sera (IgGr low dose, blue IgGr high dose, red) versus naive IgGr or day 0 IgGr. (E) AUC of sera from immunized rabbits (low dose rabbit sera, blue high dose rabbit sera, red) versus naive rabbit sera or day 0 rabbit sera. (F) AUC of sera from immunized guinea pigs at week 2 (dark blue) and individual animals (blue), naive sera (gray), and pooled day 0 sera from all animals (black). The pooled immunized curve displayed a comparable AUC to the average AUC from all individual immunized animals.

Primate serological competition.

FIG 4 Primate serological competition. (A) Competition ELISA schematic displaying immobilized His6×-tagged SARS-CoV-2 spike protein (rainbow). Preblocking of the spike protein with primate sera (blue) at various concentrations was added followed by ACE2-IgMu (green, blue) at a constant concentration. Anti-mouse HRP (green) determines the amount of ACE2-IgMu remaining in the presence of competitors through a colorimetric readout. (B) Affinity of ACE2-IgMu for immobilized SARS-CoV-2 S1+S2 full-length spike protein assessed by ELISA. Optimal concentration of ACE2-IgMu for competition assays (red arrow, 0.4 μg/ml) requires high signal without excess receptor present. (C) Optimal ACE2-IgMu concentration which displays a full blocking curve (0.40 μg/ml) from the competitor dilution series (ACE2-IgHu) while retaining a wide range in signal. (D) NHP sera pooled from five vaccinated animals were used as competitors in the primate competition assay. The AUC from vaccinated NHP sera (blue) versus day 0 NHP sera (black). (E) Human sera from nine SARS-CoV-2-positive COVID-19 patients were tested in the primate competition assay and compared with 16 naive human sera collected prepandemic. The AUC of the COVID-19 patient serum (purple) is significantly decreased compared to the prepandemic human serum (gray). The median is shown as a solid black line, and quartiles are shown as dashed black lines. (F) Human sera were analyzed by a pseudovirus neutralization assay. The samples and the coloring are the same as in (E). Statistics include a two-tailed t test with P values indicated. FIG 5 ACE2 receptor blocking correlates with pseudovirus neuralization. A symbol represents each of the individual datapoints where we had a paired AUC blocking and pseudovirus ID50 qiymatlar. The human samples are in triangles, the mice in circles, individual Guinea pigs in squares, Guinea pig pools in diamonds, and rabbit pools in hexagons. SARS-CoV-2 spike-experienced samples are shown in color. Naïve samples and healthy donors are shown in gray. Least-squares fit line is shown with P value and R squared from Prism.

SPR-based assay for ACE2 receptor blocking.

FIG 6 ACE2 receptor competition assay development. (A) Overview of SPR experiment depicting SARS-CoV-2 RBD capture by streptavidin-biotin interaction, sera injected as analyte, and ACE2 injected as second analyte. (B) Sensorgram for ACE2 blocking SPR assay with ACE2-IgHu injected as sample (ACE2namuna) as indicated and ACE-IgHu injected as receptor (ACE2retseptor) as indicated. Sample responses were referenced to blank injections. Each curve corresponds to a 3-fold dilution of ACE2namuna starting at 1,500 nM as indicated on the right, and the ACE2retseptor was injected at a constant concentration of 100 nM to all curves. (C) Response in RUs measured at the end of sample (ACE2namuna) injection (blue) and receptor (ACE2retseptor) injection (red) at each concentration of sample. (D) ACE2 inhibition curve derived from RUs at each concentration.

Rahmatlar

We thank all the participants involved in the study Bernie McCudden and Jenny Mitchell for support with the cohort and Jill Garlick, Janine Roney, Anne Paterson and the research nurses at the Alfred Hospital. This work was supported by the Australian National Health and Medical Research Council (NHMRC) Leadership Investigator Grant to KK (#1173871), NHMRC Program Grant to DLD (#1132975), Research Grants Council of the Hong Kong Special Administrative Region, China (#T11-712/19-Ncdf) to KK, the Jack Ma Foundation to KK, KS and AWC, the Medical Research Future Fund (#2005544) to KK, SJK, AKW and AWC, the a2 Milk Foundation to KS, MRFF Award (#1202445) to KK, NHMRC Program Grant (#1071916) to KK. KK was supported by NHMRC Senior Research Fellowship (1102792), DLD by a NHMRC Principal Research Fellowship (#1137285) and KS by an NHMRC Investigator grant (#1177174). THON is supported by NHMRC EL1 Fellowship (#1194036). LH is supported by the Melbourne International Research Scholarship (MIRS) and the Melbourne International Fee Remission Scholarship from The University of Melbourne. JRH and WZ are supported by the Melbourne Research Scholarship from The University of Melbourne. XJ is supported by China Scholarship Council-University of Melbourne joint Scholarship. CES has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement (#792532). CES and KS received funding from the Doherty Collaborative Seed Grant. KK and AWC were supported by the University of Melbourne Dame Kate Campbell Fellowship. The Melbourne WHO Collaborating Centre for Reference and Research on Influenza is supported by the Australian Government Department of Health.


SARS-CoV-2 Serology Testing in the Setting of Vaccination

To enable an effective vaccination strategy, we advocate for the use of accessible, automated, high-throughput SARS-CoV-2 serology testing to help confirm efficacy and promote public health. Siemens Healthineers formulated a position paper based on input from experts in the infectious disease, immunology and vaccine development fields and the currently available body of literature.

“In clinical practice, my patients who have either had the Covid-19 infection or have been vaccinated have been extremely interested in measuring their antibody response. I explain to them that this is the best surrogate we currently have to predict if they will likely be protected from future infection. Having had the vaccine myself and subsequently testing my own blood, I was immensely relieved to see I had developed anti-spike protein antibodies. It felt like I had put on an anti-Covid-19 Kevlar suit.”

Latinis Rheumatology, LLC, Kansas City (Harrisonville, MO and Leawood, KS)

"The position statement that you have here is timely. We need to have this discussion and preparation ahead of vaccinating the general population. Serology status is incredibly important due to asymptomatic carriers, and as these vaccines are introduced the need for robust neutralizing antibody testing would become even more important to understand where we are both before and after vaccination."

University of Cambridge (UK), Department of Medicine/CITIID

“As an immunologist and clinician, I certainly see the value of serology testing in understanding the immune response to vaccines, as outlined in the position paper. With every Covid-19 vaccine targeting the spike protein, it just makes sense that measuring the immune response against spike protein is the focus going forward with serology testing. Further, scientifically I think we’re going to see a quantitative threshold for Covid-19 antibody levels that becomes apparent in which the Covid-19 immune response weakens enough that the risk of infection returns. In this respect, measuring Covid-19 antibodies after a natural infection or after vaccination will determine if someone has reached that protective threshold and remeasuring antibody levels over time will determine the need to reimmunize. In some cases, if people who have had Covid-19 infection or those who have been immunized didn’t produce sufficient antibodies, they may need to be revaccinated sooner rather than later.”

Latinis Rheumatology, LLC, Kansas City (Harrisonville, MO and Leawood, KS)

“In clinical practice, my patients who have either had the Covid-19 infection or have been vaccinated have been extremely interested in measuring their antibody response. I explain to them that this is the best surrogate we currently have to predict if they will likely be protected from future infection. Having had the vaccine myself and subsequently testing my own blood, I was immensely relieved to see I had developed anti-spike protein antibodies. It felt like I had put on an anti-Covid-19 Kevlar suit.”

Latinis Rheumatology, LLC, Kansas City (Harrisonville, MO and Leawood, KS)

"The position statement that you have here is timely. We need to have this discussion and preparation ahead of vaccinating the general population. Serology status is incredibly important due to asymptomatic carriers, and as these vaccines are introduced the need for robust neutralizing antibody testing would become even more important to understand where we are both before and after vaccination."

University of Cambridge (UK), Department of Medicine/CITIID

“As an immunologist and clinician, I certainly see the value of serology testing in understanding the immune response to vaccines, as outlined in the position paper. With every Covid-19 vaccine targeting the spike protein, it just makes sense that measuring the immune response against spike protein is the focus going forward with serology testing. Further, scientifically I think we’re going to see a quantitative threshold for Covid-19 antibody levels that becomes apparent in which the Covid-19 immune response weakens enough that the risk of infection returns. In this respect, measuring Covid-19 antibodies after a natural infection or after vaccination will determine if someone has reached that protective threshold and remeasuring antibody levels over time will determine the need to reimmunize. In some cases, if people who have had Covid-19 infection or those who have been immunized didn’t produce sufficient antibodies, they may need to be revaccinated sooner rather than later.”

Latinis Rheumatology, LLC, Kansas City (Harrisonville, MO and Leawood, KS)

“In clinical practice, my patients who have either had the Covid-19 infection or have been vaccinated have been extremely interested in measuring their antibody response. I explain to them that this is the best surrogate we currently have to predict if they will likely be protected from future infection. Having had the vaccine myself and subsequently testing my own blood, I was immensely relieved to see I had developed anti-spike protein antibodies. It felt like I had put on an anti-Covid-19 Kevlar suit.”

Latinis Rheumatology, LLC, Kansas City (Harrisonville, MO and Leawood, KS)

Serology tests can inform vaccination utilization and status of vaccine response at multiple junctures:

  • Data to establish a threshold for protection or immunity
  • Post-vaccination initial response 1
  • Duration of vaccination response 2

Appropriate characteristics of a serology assay in the assessment of need to vaccinate and vaccine response:

  • Quantitative results
  • Spike protein receptor-binding domain (S1 RBD) neutralizing IgG antibody detection
  • Very high specificity (≥99.5%)

Neutralization of the SARS-CoV-2 virus with S1-RBD

Neutralizing Antibodies: Why the Spike Protein?

SARS-CoV-2 serology assays that utilize the receptor-binding domain (RBD) of the S1 spike antigen detect neutralizing antibodies that block the virus entry into cells. 3-8 S1-RBD-specific assays are likely to prove advantageous over S1 and whole spike, especially if using a quantitative assay, as neutralizing versus binding antibodies might be expected to be enriched and therefore better correlate to immunity.

The utilization of the S1-RBD is aligned with the multiple vaccines in development that target or include the SARS-CoV-2 S1 RBD, with the goal of producing neutralizing (and therefore likely protective) antibodies in vaccinated subjects. 9 The spike protein and particularly the RBD are the most common target of vaccine designs.


SARS-CoV-2 Multiplex Serology Assays

ProcartaPlex Serology Assays

The proteins that serve as primary antigens to stimulate an immune response producing IgA, IgM, and IgG antibodies during SARS-CoV-2 infection include the nucleocapsid (N), the spike (S) protein, and sub-regions of the spike protein such as the receptor binding domain (RBD) and the S1 regions. The Nucleocapsid (N) protein has the highest homology (90%) between SARS-CoV-1 and SARS-CoV-2 (1). Serology test kits available during the early phase of the SARS-CoV-2 pandemic were developed to detect antibodies against the Nucleocapsid, which displayed significant cross-reactivity, and thus higher false positive readings for subjects exposed to SARS-CoV-1 (1). The SARS-CoV spike (S) protein assembles into a trimerized structure to form a crown-like (hence corona) appearance and is composed of a S1 and S2 subunit. Within S1, the receptor binding domain (RBD), which is located in the C-terminal subdomain, has higher identity (74%) between SARS-CoV and SARS-CoV-2 than the N-terminal domain, consistent with the view that SARS-CoV-2 may use ACE2 as its receptor for entry into host cells like SARS-CoV (2). The RBD has been identified as one of the immunodominant sites of the SARS-CoV-2 spike protein, with antibodies against the spike protein correlating well with neutralization. In addition, it is important to test serologic cross-reactivity with endemic and seasonal coronaviruses to rule out false-positive results. The Human Coronavirus Ig Total 11-Plex ProcartaPlex Panel enables screening of four SARS-CoV-2 antibodies (Spike trimer, S1 subunit, RBD, and Nucleocapsid), six coronavirus strains (SARS-CoV-1, MERS, CoV-NL63, CoV-KHU1, CoV-229E, CoV-OC43 ), and one negative control in a single well using Luminex xMAP technology. Simultaneous detection of anti-SARS-CoV-2 antibodies and related coronavirus antibodies in one assay can save time to provide a complete, holistic data set using plasma or serum samples.

Figure 1. Screening results from 39 Covid PCR (+) and 168 healthy PCR (-) controls for SARS-CoV-2 antigens. Results show antibody levels detected for spike timer, S1, RBD, and Nucleocapsid antigens correspond to the expected results of high antibody levels for PCR (+) and low antibody levels for PCR (-) samples.


Manbalar

Naji H (2020) 2019 yangi koronavirus 2019-nCoVning paydo bo'lishi. Eur J Med Health Sci. https://doi.org/10.24018/ejmed.2020.2.1.169

Chan JFW, Li KSM, To KKW va boshqalar (2012) Inson betakoronavirus 2c EMC/2012 (HCoV-EMC) romanining kashf etilishi SARSga o'xshash boshqa pandemiyaning boshlanishimi? J infektsiyali 65: 477-489. https://doi.org/10.1016/j.jinf.2012.10.002

Lim YX, Ng YL, Tam JP, Liu DX (2016) Inson koronaviruslari: virus -xost o'zaro ta'sirini ko'rib chiqish. Kasalliklar. https://doi.org/10.3390/diseases4030026

Jones BA, Greys D, Kock R va boshq (2013) Zoonozning paydo bo'lishi qishloq xo'jaligining kuchayishi va atrof -muhit o'zgarishi bilan bog'liq. Proc Natl Acad Sci 110: 8399–8404. https://doi.org/10.1073/pnas.1208059110

Kahn JS, McIntosh K (2005) Tarix va koronavirus kashfiyotidagi so'nggi yutuqlar. Pediatr Infect Dis J 24: S223–S227. https://doi.org/10.1097/01.inf.0000188166.17324.60

Fehr AR, Perlman S (2015). Koronaviruslar: ularning replikatsiyasi va patogenezi haqida umumiy ma'lumot. Koronaviruslarda. Molekulyar biologiya usullari. Humana Press, Nyu-York, 1–23-betlar

Sun C, Chen L, Yang J va boshqalar (2020) SARS-CoV-2 va SARS-CoV spike-RBD tuzilishi va retseptorlari bilan bog'lanishini taqqoslash va antikorlarni zararsizlantirish va vaksina ishlab chiqarishga potentsial ta'siri. bioRxrv. https://doi.org/10.1101/2020.02.16.951723

Schmaljohn AL (2013) Neytrallashtiruvchi faollikka ega bo'lmagan himoya antiviral antikorlar: pretsedentlar va tushunchalar evolyutsiyasi. Curr OIV Res 11: 345-353. https://doi.org/10.2174/1570162x113116660057

Bosch BJ, De HCAM, Rottier PJM (2004) Karboksi uchida yashil lyuminestsent oqsil bilan cho'zilgan Koronavirus boshoqli glikoproteini yig'ish qobiliyatiga ega. J Virol 78: 7369–7378. https://doi.org/10.1128/JVI.78.14.7369

Fan H, Ooi A, Tan YW va boshqalar (2005) Koronavirus yuqumli bronxit virusining nukleokapsid oqsili: uning N-terminal domenining kristal tuzilishi va multimerizatsiya xususiyatlari. Struktura 13: 1859–1868. https://doi.org/10.1016/j.str.2005.08.021

Jiang S, Hillyer C, Du L (2020) SARS-CoV-2 va boshqa odam koronaviruslariga qarshi antitelalarni neytrallash. Trends Immunol 41:355–359. https://doi.org/10.1016/j.it.2020.03.007

di Gabriella M, Kristina S, Concetta R va boshqalar (2020) SARS-Cov-2 infektsiyasi: inson immun tizimining javobi va tezkor test va davolanishning mumkin bo'lgan oqibatlari. Ichki immunofarmakol 84: 106519. https://doi.org/10.1016/j.intimp.2020.106519

Lin Q, Zhu L, Ni Z va boshqalar (2020) SARS-CoV-2 uchun sarumni neytrallashtiruvchi antikorlarning davomiyligi: SARS-CoV infektsiyasidan darslar. J mikrobiol immunol infektsiyasi. https://doi.org/10.1016/j.jmii.2020.03.015

Vashist SK (2020) COVID-19 uchun in vitro diagnostik tahlillar: so'nggi yutuqlar va rivojlanayotgan tendentsiyalar. Tashxis 10: 202. https://doi.org/10.3390/diagnostics10040202

Chjou P, Lou YX, Vang XG va boshqalar (2020) Ko'rshapalak kelib chiqishi mumkin bo'lgan yangi koronavirus bilan bog'liq pnevmoniya epidemiyasi. Tabiat 579: 270-273. https://doi.org/10.1038/s41586-020-2012-7

Park TJ, Xyun MS, Li XJ va boshqalar (2009) O'tkir respirator sindromni tez tashxislash uchun o'z-o'zidan yig'ilgan oqsilga asoslangan sirtli plazmonli rezonans biosensor. Talanta 79:295–301. https://doi.org/10.1016/j.talanta.2009.03.051

Park TJ, Li S-K, Yoo SM va boshqalar (2011) Funktsionallashtirilgan fotonik nanokristallar yordamida reflektiv biosensorni ishlab chiqish. J Nanosci Nanotexnol 11: 632–637. https://doi.org/10.1166/jnn.2011.3269

Woo PCY, Lau SKP, Wong BHL va boshqalar (2004) SARS koronavirusi tufayli pnevmoniya bilan og'rigan bemorlarda og'ir o'tkir respirator sindromi (SARS) koronavirus nukleokapsidli oqsilga qarshi immunoglobulin G (IgG), IgM va IgA antikorlarining uzunlamasına profili. Clin Diagn Lab Immunol 11:665–668. https://doi.org/10.1128/CDLI.11.4.665

Siracusano G, Pastori C, Lopalco L (2020) COVID-19 kasallaridagi gumoral immunitetli javoblar: zamonaviy texnologiyalar oynasi. Old Immunol 11: 1049. https://doi.org/10.3389/fimmu.2020.01049

Chjan N, Vang L, Deng X va boshqalar (2020) Odamlarda respirator virus infektsiyasini aniqlashdagi so'nggi yutuqlar. J Med Virol 92:408–417. https://doi.org/10.1002/jmv.25674

van der Hoek L (2007) Inson koronaviruslari: ular nimaga olib keladi? Antivir Ther 12: 651-658

Carlos WG, Dela Cruz CS, Cao B va boshqalar (2020) Roman Wuhan (2019-nCoV) koronavirusi. Am J Respir Crit Care Med 201:P7-P8. https://doi.org/10.1164/rccm.2014P7

Lam CWK, Chan MHM, Wong CK (2004) Og'ir o'tkir respirator sindrom: klinik va laboratoriya ko'rinishlari. Clin Biochem Rev 25: 121–132

Wong TW (2006) "SARS epidemiyasi takrorlanadimi?" Mutaxassislarning fikrlarini retrospektiv tahlil qilish. J Epidemiol Community Heal 60:87

Rabaan AA (2017) Yaqin Sharq respirator sindromi koronavirusi: besh yildan keyin. Ekspert Rev Respir Med 11:901–912. https://doi.org/10.1080/17476348.2017.1367288

Xu B, Ge X, Vang L-F, Shi Z (2015) Inson koronaviruslarining yarasalardan kelib chiqishi. Virol J 12: 221. https://doi.org/10.1186/s12985-015-0422-1

Chan JF-W, Kok K-H, Zhu Z va boshqalar (2020) Vuxanga tashrifidan so'ng atipik pnevmoniya bilan og'rigan bemordan ajratilgan 2019 yildagi yangi odam-patogen koronavirusning genomik tavsifi. Rivojlanayotgan mikroblar yuqadi 9:221–236. https://doi.org/10.1080/22221751.2020.1719902

Lu X, Stratton CW, Vey Y (2020) Wuxan SARS-CoV-2-Xitoyni nima kutmoqda. J Med Virol 92: 546-547. https://doi.org/10.1002/jmv.25738

Kwong KCNK, Mehta PR, Shukla G, Mehta AR (2020) COVID-19, SARS va MERS: nevrologik nuqtai nazar. J Clin Neurosci. https://doi.org/10.1016/j.jocn.2020.04.124

Jahon sog'liqni saqlash tashkiloti (2020) JSST Koronavirus kasalligi (COVID-19) boshqaruv paneli. https://covid19.who.int/

Zheng J (2020) SARS-CoV-2: global tahdidni keltirib chiqarayotgan yangi koronavirus. Int J Biol Sci 16: 1678–1685. https://doi.org/10.7150/ijbs.45053

Lu R, Chjao X, Li J va boshqalar (2020) 2019 yilgi yangi koronavirusning genomik tavsifi va epidemiologiyasi: virusning kelib chiqishi va retseptorlari bog'lanishiga ta'siri. Lancet 395:565–574. https://doi.org/10.1016/S0140-6736(20)30251-8

Vong HYF, Lam HYS, Fong AH-T va boshqalar (2020) COVID-19 musbat bemorlarda ko'krak qafasi rentgenografiyasi natijalarining chastotasi va tarqalishi. Radiologiya. https://doi.org/10.1148/radiol.2020201160

Kim S-H, Ko J-H, Park GE va boshq. (2017) Immuniteti zaif uy egalarida MERS-CoV infektsiyasining atipik namoyishlari. J yuqumli kimyoterapiya 23: 769-773. https://doi.org/10.1016/j.jiac.2017.04.004

Zeng Q, Chen L, Cai X va boshq (2003) SARS tashxisida ko'krak qafasi rentgenografiyasi va KT. Chin J Radiol 37: 600-603

Chju X, Vang X, Xan L va boshqalar (2020) COVID-19 diagnostikasi uchun nanozarrachalar asosidagi biosensor bilan birlashtirilgan teskari transkripsiya zanjiri vositasida izotermik kuchaytirish. medRxiv. https://doi.org/10.1101/2020.03.17.20037796

Xirotsu Y, Mochizuki H, Omata M (2020) Double-Quencher zondlari bir bosqichli RT-PCR yordamida og‘ir o‘tkir respirator sindromli koronavirus 2 (SARS-CoV-2)ni aniqlash sezgirligini yaxshiladi. medRxiv. https://doi.org/10.1101/2020.03.17.20037903

Qiu G, Gai Z, Tao Y va boshqalar (2020) O'tkir respirator sindromi koronavirus 2 ni juda aniq aniqlash uchun ikki funktsiyali plazmonik fototermik biosensorlar. ACS Nano. https://doi.org/10.1021/acsnano.0c02439

Diao B, Wen K, Chen J va boshqalar (2020) Nukleokapsid oqsilini aniqlash orqali o'tkir respirator sindrom koronavirus 2 infektsiyasining diagnostikasi. medRxiv. https://doi.org/10.1101/2020.03.07.20032524

Layqah LA, Eissa S (2019) Bir qator oltin nanozarrachalar bilan o'zgartirilgan uglerod elektrodlari yordamida Yaqin Sharqdagi nafas olish sindromi bilan bog'liq bo'lgan korona virusi uchun elektrokimyoviy immunosensor. Microchim Acta 186: 224. https://doi.org/10.1007/s00604-019-3345-5

Meyer B, Drosten C, Myuller MA (2014) Rivojlanayotgan koronaviruslar uchun serologik tahlillar: qiyinchiliklar va tuzoqlar. Virus Res 194: 175–183. https://doi.org/10.1016/j.virusres.2014.03.018

Liu L, Liu W, Zheng Y va boshqalar (2020) Kasalxonaga yotqizilgan 238 bemorda og'ir o'tkir respirator sindromli koronavirus 2 (SARS-CoV-2) uchun serologik tahlil bo'yicha dastlabki tadqiqot. medRxiv. https://doi.org/10.1101/2020.03.06.20031856

Cheng MS, Toh C-S (2013) Viruslarni o'ta sezgir aniqlash uchun yangi biosensing metodologiyasi. Tahlilchi 138:6219–6229. https://doi.org/10.1039/C3AN01394D

Xuang X, Vey F, Xu L va boshqalar (2020) COVID-19 epidemiologiyasi va klinik xususiyatlari. Arch Eron Med 23: 268-271. https://doi.org/10.34172/aim.2020.09

Abbasi J (2020) COVID-19 uchun antikorlarni tekshirishning va'dasi va xavfi. JAMA. https://doi.org/10.1001/jama.2020.6170

Ksiazek TG, Erdman D, Goldsmith CS va boshqalar (2003) Og'ir o'tkir respirator sindrom bilan bog'liq yangi koronavirus. N Engl J Med 348: 1953-1966. https://doi.org/10.1056/NEJMoa030781

Leung DTM, Tam FCH, Ma CH va boshq. (2004) O'tkir respirator sindromi (SARS) bilan og'rigan bemorlarning antikorlarga reaktsiyasi virusli nukleokapsidga qaratilgan. J yuqumli kasallik 190: 379-386. https://doi.org/10.1086/422040

Tan Y-J, Goh P-Y, Fielding BC va boshqalar (2004) Og'ir o'tkir respirator sindromli koronavirus rekombinant oqsillariga qarshi antikor reaktsiyalarining profillari va ulardan diagnostik belgilar sifatida foydalanish mumkin. Immunol klinik diagnostika laboratoriyasi 11: 362-371. https://doi.org/10.1128/CDLI.11.2.362

Wu H-S, Chiu S-C, Tseng T-C va boshq (2004) SARS bilan bog'liq serologik va molekulyar biologik usullar. Emerg Infect Dis 10:304–310. https://doi.org/10.3201/eid1002.030731

Amanat F, Stadlbauer D, Strohmeier S va boshq (2020) Odamlarda SARS-CoV-2 serokonversiyasini aniqlash uchun serologik tahlil. medRxiv. https://doi.org/10.1101/2020.03.17.20037713

Xon S, Nakajima R, Jain A va boshqalar (2020) Oddiy odam koronaviruslari va SARS-CoV-2 o'rtasidagi korologik antigen mikroarray yordamida serologik o'zaro ta'sirchanlikni tahlil qilish. bioRxiv. https://doi.org/10.1101/2020.03.24.006544

Lin D, Liu L, Zhang M va boshqalar (2020) COVID-19 tarqalishi paytida 2019 yangi koronavirus (SARS-CoV-2) infektsiyasini tashxislashda serologik testni baholash. medRxiv. https://doi.org/10.1101/2020.03.27.20045153

Chjan P, Gao Q, Vang T va boshq (2020) 2019 yilgi yangi koronavirus kasalligi (COVID-19) ning serologik diagnostikasi uchun rekombinant nukleokapsid va boshoq oqsillarini baholash. medRxiv. https://doi.org/10.1101/2020.03.17.20036954

Maache M, Komurian-Pradel F, Rajoharison A va boshq (2006) SARSga qarshi antikorlarni aniqlash uchun ikki bo'linma (S1 va S2) yordamida rekombinant o'tkir respiratorli g'arbiy blot tahlilining noto'g'ri ijobiy natijalari tuzatildi. CoV. Immunol klinik diagnostika laboratoriyasi 13: 409-414. https://doi.org/10.1128/CVI.13.3.409

Xiang J, Yan M, Li X va boshqalar (2020) Pnevmoniya (COVID-19) epidemiyasini keltirib chiqaradigan yangi koronavirusni (SARS-Cov-2) aniqlash uchun ferment bilan bog'liq immunoassay va kolloid oltin-immunoxromatografik tahlil to'plamini baholash. medRxiv. https://doi.org/10.1101/2020.02.27.20028787

Hoy CFO, Kushiro K, Yamaoka Y va boshqalar (2019) MERS-CoVga qarshi antikorlarni aniqlash uchun tezkor multipleks mikrofiber asosidagi immunoassay. Sens Bio Sens Res. https://doi.org/10.1016/j.sbsr.2019.100304

Aydin S (2015) Elishayning qisqacha tarixi, tamoyillari va turlari, ELISA yordamida peptid/oqsil tahlillari bo'yicha laboratoriya tajribamiz. Peptidlar 72: 4-15. https://doi.org/10.1016/j.peptides.2015.04.012

Vang YD, Li Y, Xu G-B va boshqalar (2004) ELISA va Western blotli SARS bilan kasallangan donorlardan sarumda SARS-CoVga qarshi antikorlarni aniqlash. Immunol klinikasi 113: 145-150. https://doi.org/10.1016/j.clim.2004.07.003

Carattoli A, Di BP, Grasso F va boshq (2005) SARS tashxisi uchun oqsilga asoslangan rekombinant ELISA va immuno-sitokimyoviy tahlil. J Med Virol 76:137–142. https://doi.org/10.1002/jmv.20338

Woo PCY, Lau SKP, Wong BHL va boshqalar (2005) SARS koronavirusli pnevmoniya serodiagnozi uchun o'tkir o'tkir respirator sindromi (SARS) koronavirus boshoqli polipeptidli fermentlar bilan bog'langan immunosorbent tahlil (ELISA) va SARS koronavirus nukleokapsidli oqsil ELISA ning differentsial sezuvchanligi. J Clin Microbiol 43: 3054-3058. https://doi.org/10.1128/JCM.43.7.3054

Fukushi S, Fukuma A, Kurosu T va boshqalar (2018) MERS-koronavirus boshoqli oqsiliga qarshi yangi monoklonal antikorlarning tavsifi va ularning raqobatbardosh ELISA yordamida turlardan mustaqil antikorlarni aniqlashda qo'llanilishi. J Virol usullari 251: 22-29. https://doi.org/10.1016/j.jviromet.2017.10.008

Chjao J, Yuan Q, Vang X va boshqalar (2020) Yangi koronavirus kasalligi bilan og'rigan bemorlarda SARS-CoV-2 ga antikor javoblari 2019. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa344

Gonzales-Martinez MÁ, Puchades R, Maquieira Á (2018) Immunoanalitik usul: ferment bilan bog'langan immunosorbent tahlil (Elishay). Oziq-ovqatlarni autentifikatsiya qilishning zamonaviy usullari. Akademik matbuot, Nyu -York, 617-657 -betlar

García-González E, Aramendía M, Alvarez-Ballano D va boshq. (2016) Ko'p gormonli immunoassaylarga aralashadigan endogen antikorlarni o'z ichiga olgan sarum namunasi. Interferentsiyani aniqlash uchun laboratoriya strategiyalari. Amaliyot laboratoriyasi Med 4:1–10. https://doi.org/10.1016/j.plabm.2015.11.001

Guan M, Chan KH, Peiris JSM va boshqalar (2004) Ferment bilan bog'liq immunosorbent tahlilini va og'ir o'tkir respirator sindromning serologik diagnostikasi uchun immunokromatografik testni baholash va tasdiqlash. Clin Diagn Lab Immunol 11:699–703. https://doi.org/10.1128/CDLI.11.4.699

Guan M, Chen HY, Foo SY va boshq. (2004) SARS bilan og'rigan bemorlarda O'tkir nafas yo'llari sindromi (SARS) ga qarshi immunoglobulin G antikorlarini aniqlash uchun rekombinant oqsilga asoslangan ferment bilan bog'langan immunosorbent tahlil va immunokromatografik testlar. Clin Diagn Lab Immunol 11:287–291. https://doi.org/10.1128/CDLI.11.2.287

Liu X, Shi Y, Li P va boshqalar (2004) SARS ehtimoli bo'lgan bemorlarda og'ir o'tkir respirator sindrom (SARS) bilan bog'liq koronavirusning nukleokapsid oqsiliga antikorlarning profillari. Immunol klinik diagnostika laboratoriyasi 11: 227–228. https://doi.org/10.1128/CDLI.11.1.227

Che X-Y, Qiu L-W, Liao Z-Y va boshq. (2005) O'tkir respirator sindrom bilan bog'liq og'ir koronavirus va 229E va OC43 odam koronaviruslari o'rtasida antigenik o'zaro reaktivlik. J yuqumli kasallik 191: 2033-2037. https://doi.org/10.1086/430355

Smit-Norovits TA, Kusonruksa M, Vong D va boshqalar (2012) A va Grippga qarshi emlashdan so'ng H1N1 infektsiyasi bilan kasallangan bolalar va kattalar sarumida IgE grippga qarshi HIN1 virusiga qarshi antikorlarning uzoq davom etishi: amaliy tadqiqotlar. J Inflamm Res 5: 111–116. https://doi.org/10.2147/JIR.S34152

Martins-Gomes C, Silva AM (2018). Teratogen agentlar ta'sirida in vitro oqsil ekspressiyasini tahlil qilish uchun Western blot metodologiyasi. Teratogenlik testi. Molekulyar biologiya usullari. Humana Press, Nyu-York, 191–203-betlar

Mahmud T, Yang P-C (2012) Western blot: texnika, nazariya va muammolarni bartaraf etish. N Am J Med Sci 4: 429-434. https://doi.org/10.4103/1947-2714.100998

Qiu D, Tannock GA, Barry RD, Jekson DC (1992) Gripp virion oqsillariga antikorlarning reaktsiyalarining Western blot tahlili. Immunol hujayrali biol 70: 181-191. https://doi.org/10.1038/icb.1992.23

Castejon MJ, Yamashiro R, Oliveira CAF, Veras MASM (2017) Filtr qog'ozida (DBS) to'plangan qon namunalarida OIVga qarshi antikorlarni aniqlash uchun Western blotning ishlashini tekshirish. J Bras Patol va Med Laboratoriyasi 53: 5-12. https://doi.org/10.5935/1676-2444.20170002

Kurien BT, Scofi RH (2015) Western blotting: kirish. Molekulyar biologiya usullari. Humana Press, Nyu-York, 17–30-betlar

He Q, Chong KH, Chng HH va boshqalar (2004) O'tkir respirator sindromga olib keladigan koronavirusga qarshi antikorlarni aniqlash uchun g'arbiy blot tahlilini ishlab chiqish. Clin Diagn Lab Immunol 11:417–422. https://doi.org/10.1128/CDLI.11.2.417

Vang Y, Chang Z, Ouyang J va boshqalar (2005) SARSli bemorlarda SARS bilan bog'liq koronavirusning nukleokapsid va boshoqli oqsillariga IgG antikorlari profillari. Biol DNK hujayrasi 24: 521-527. https://doi.org/10.1089/dna.2005.24.521

Guan M, Chen HY, Tan PH va boshqalar (2004) G'arbiy immunoblot tahlilida rekombinant oqsil bilan birlashtirilgan virusli lizat antijenini og'ir o'tkir respirator sindromning serodiagnozini tasdiqlovchi test sifatida ishlatish. Immunol klinik diagnostika laboratoriyasi 11: 1148–1153. https://doi.org/10.1128/CDLI.11.6.1148

Odell ID, Kuk D (2013) Immunofluoresans texnikasi. J Investig Dermatol 133:e4. https://doi.org/10.1038/jid.2012.455

Dilnessa T, Zeleke H (2017) Hujayra madaniyati, sitopatik ta'sir va virusli infektsiyaning immunofluoresans diagnostikasi. J Microbiol Mod Technol 2: 102

Bossuyt X, Cooreman S, De Baere H va boshq (2013) bilvosita immunofloresansli avtomatlashtirilgan tahlil orqali yadro yadroli antikorlarni aniqlash. Clin Chim Acta 415:101–106. https://doi.org/10.1016/j.cca.2012.09.021

Zhu X, Xu S, Jona G va boshq (2006) Koronavirus oqsilli mikroarray yordamida o'tkir respirator sindromning og'ir diagnostikasi. Proc Natl Acad Sci 103: 4011-4016. https://doi.org/10.1073/pnas.0510921103

Reusken C, Mou H, Godeke GJ va boshqalar (2013) Proteinli mikroarray orqali paydo bo'lgan inson koronaviruslari uchun o'ziga xos serologiya. Eurosurveillance 18:20441. https://doi.org/10.2807/1560-7917.ES2013.18.14.20441

Chan PKS, Ng K-C, Chan RCW va boshq. (2004) SARSning serologik diagnostikasi uchun immunofluoresans tahlil. Emerg Infect Dis 10:530–532. https://doi.org/10.3201/eid1003.030493

Manopo I, Lu L, He Q va boshq (2005) SARS-CoVga antikor javoblarini aniqlash uchun xavfsiz va sezgir Spike oqsiliga asoslangan immunofluoresans tahlilini baholash. J Immunol usullari 296: 37-44. https://doi.org/10.1016/j.jim.2004.10.012

Koczula KM, Gallotta A (2016) Yanal oqim tahlillari. Essays Biochem 60:111–120. https://doi.org/10.1042/EBC20150012

Vong RC, Tse HY (2008) Yanal oqim immunoassay. Humana Press, Nyu -York

Bahodir EB, Sezgintürk MK (2016) Yon oqim tahlillari: printsiplar, dizaynlar va teglar. Trends Anal Chem 82:286–306. https://doi.org/10.1016/j.trac.2016.06.006

Zhao L, Sun L, Chu X (2009) Chemiluminescence immunoassay. Trend Anal Chem 28: 404-415. https://doi.org/10.1016/j.trac.2008.12.006

Cai X-F, Chen J, Xu J-L va boshqalar (2020) Korona virusli kasallik 2019 (COVID-19) ning serologik diagnostikasi uchun peptidga asoslangan magnit kimyiluminesans ferment immunoassay. J Infect Dis. https://doi.org/10.1101/2020.02.22.20026617

Qu J, Wu C, Li X va boshqalar (2020) Koronavirus 2 (SARS-CoV-2) ning o'tkir o'tkir respirator sindromiga qarshi IgG va IgM antikorlarining profili. Clin Infect Dis. https://doi.org/10.1093/cid/ciaa489

Turner APF (2013) Biosensorlar: sezuvchanlik va sezgirlik. Chem Soc Rev 42: 3184–3196. https://doi.org/10.1039/c3cs35528d

Caygill RL, Blair GE, Millner PA (2010) Inson patogenlarini aniqlash uchun virusli biosensorlarni tekshirish. Anal Chim Acta 681: 8-15. https://doi.org/10.1016/j.aca.2010.09.038

Lakshmipriya T, Gopinat SCB (2019) Biosensorlar va biomolekulalarga kirish. Nanobiosensorlarda biomolekulyar nishonga olish. Elsevier, Nyu -York, 1–21 -betlar

Hsueh P-R, Hsiao C-H, Yeh S-H va boshqalar (2003) Jiddiy o'tkir respirator sindromda mikrobiologik xususiyatlar, serologik javoblar va klinik ko'rinishlar, Tayvan. Emerg Infect Dis 9: 1163–1167. https://doi.org/10.3201/eid0909.030367

Peiris JSM, Lai ST, Poon LLM va boshqalar (2003) Koronavirus og'ir o'tkir respirator sindromning mumkin bo'lgan sababi sifatida. Lancet 361: 1319–1325. https://doi.org/10.1016/S0140-6736(03)13077-2

Shi Y, Yi Y, Li P va boshqalar (2003) Antijenni ushlab turuvchi ferment bilan bog'langan immunosorbent tahlilida SARS koronavirusi nukleokapsid antikorlarini aniqlash orqali og'ir o'tkir respirator sindromi (SARS) tashxisi. J Clin Microbiol 41: 5781-5782. https://doi.org/10.1128/JCM.41.12.5781

Okba NMA, Myuller MA, Li V va boshqalar (2020) COVID-19 bemorlarida SARS-CoV-2 ga xos antitelalarga javoblar. Yangi paydo bo'lgan infektsiya. https://doi.org/10.1101/2020.03.18.20038059

Perera RAPM, Mok CKP, Tsang OTY va boshqalar (2020) Koronavirus 2 (SARS-CoV-2) og'ir o'tkir respirator sindromi uchun serologik tahlillar, 2020 yil mart. Eurosurveillance 25:2000421. https://doi.org/10.2807/1560-7917

EUROIMMUN AG (2020) anti-SARS-CoV-2 ELISA (IgG) dan foydalanish bo'yicha ko'rsatmalar

InBios International Inc. (2020) InBios SCoV-2 Detect TM IgG Elishay foydalanish bo'yicha ko'rsatmalar

Beijing Wantai Biological Pharmacy Enterprise Co. Ltd. (2020) WANTAI SARS-CoV-2 Ab ELISA

Bio-Rad Laboratories Inc. (2020) Platelia SARS-CoV-2 Jami Ab

Shanghai Fosun Long March Medical Science Co. (Ltd) Shanghai Fosun Long March Medical Science Co., Ltd.dan olingan "Fosun COVID-19 IgG/IgM tez antikorlarni aniqlash to'plami" uchun serologik testlarni baholash hisoboti.